
Layout of Graph Visualizations

Ulrik Brandes

Dissertation der Universität Konstanz
Fakultät für Mathematik und Informatik

1999



Teile dieser Arbeit wurden bereits in Brandes und Wagner (1997, 1998a,b,
1999), Brandes, Kenis, Raab, Schneider und Wagner (1999) bzw. in den
Konstanzer Schriften in Mathematik und Informatik Nr. 33, 40, 60, 62, 69
und 85 veröffentlicht.
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Preface

My first memory of the subject of this thesis is my own ignorance. In Septem-
ber 1995, Dorothea Wagner had arranged for the newer members of her work-
ing group to attend a symposium held in Passau. The theme of the event
was manifested in its title, Graph Drawing, and I wasn’t quite expecting to
plunge into my new area of interest. After all, mathematicians and computer
scientists were going to speak about pictures of binary relations.

Things turned out different from what I expected, obviously. And it is
my sincere hope that some of the excitement I find in graph visualization has
found its way into this thesis.

Taking us to this particular conference is only one good Dorothea Wagner
did us. It is with great pleasure and deep gratitude that I acknowledge her
supervision and support. She would teach me many different things (some-
times without even knowing), give me directions, listen to my outlandish
ideas, let me go to conferences, introduce me to amazing people, and do all
the other things a student can hope for, but never expect from his supervisor.
Hopefully I can return at least some of this someday.

Many people have contributed directly or indirectly to this thesis and I
apologize for mentioning only a few. Thanks to Michael Kaufmann, who
readily agreed to be a thesis reviewer, and Marc H. Scholl and Volker Schnei-
der for joining my examination committee.

From Graph Drawing ’95 I returned to Konstanz with the urge to find
graphs that would be interesting to visualize, and I vaguely recalled a friend
mentioning “political networks” or such (credit goes to Natascha Füchtner).
To make a long story short, by June 1996 an interdisciplinary project group
was set up, starting to explore the visualization of social networks.1 Work-
ing together with Patrick Kenis, Jörg Raab, Volker Schneider, and Dorothea
Wagner was an invaluable experience from which I profited both profession-
ally and personally.

In similar, and sometimes also completely different, ways I benefited from

1Financially supported by the Ausschuß für Forschungsfragen der Universität Kon-
stanz.
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sharing an office with Annegret Liebers. Thanks for sustaining, proofreading
part of this thesis, and never-ending food supply.

The embarrassment of writing about visualization without visualizations
was avoided only with the much appreciated help of Marco Gaertler, Michael
Güdemann, Vanessa Kääb, Andres Löh, Frank Müller, and Thomas Will-
halm, who combined stand for most of the implementation work.

Joining the newly created Computer Science group at the University of
Konstanz in October 1994, I was fortunate to become part of a stimulating
and supportive environment. While I thank all those contributing to it, I
blame my colleagues and friends Dieter Gluche and Torsten Grust for morn-
ings lost in hangover. Our weekly “E-Seminar” was an important institution
in which it was expressis verbis allowed to talk about thesis related topics –
soccer, for instance.

Standing in for all those people that have been important during this
phase of my life, special thanks go to my family, Angelika, Klaus, and Timo
Brandes, and to Biene for being mein Mensch.



Deutsche Zusammenfassung

Visualisierung ist ein attraktives und effektives Mittel sowohl der Präsen-
tation als auch der Exploration von Daten. In beiden Fällen ist das oberste
Ziel die getreue Darstellung der durch die Daten repräsentierten Information
in leicht verständlicher Form.

Handelt es sich um relationale Daten, besteht der wesentliche Informa-
tionsgehalt in der Struktur der Beziehungen. Die entscheidende Aufgabe bei
der Visualisierung von Graphen, also der graphischen Darstellung binärer
Relationen, ist daher der Abgleich der räumlichen Anordnung innerhalb des
Diagramms mit den strukturellen Eigenschaften des Graphen. Dieser Schritt
und sein Ergebnis werden auch das Layout der Visualisierung genannt. Da-
bei sind so komplexe Abhängigkeiten zu berücksichtigen, daß aussagekräftige,
auf objektivierten Kriterien beruhende Visualisierungen durch eine algorith-
mische Behandlung des Layoutproblems überhaupt erst möglich werden.

Layout von Graphenvisualisierungen ist damit insbesondere ein Problem
der angewandten Informatik und diskreten Mathematik, dessen Bedeutung
zusammen mit dem Bedarf an Mitteln zur Analyse und Vermittlung kom-
plexer Informationen wächst, bei dem jedoch sowohl die Modellbildung (Be-
schreibung geeigneter Darstellungen) als auch die Problemlösung (automati-
sche Erzeugung geeigneter Darstellungen) zahlreiche ungeklärte Fragen auf-
werfen. Wichtigstes Ergebnis dieser Arbeit sind ein vereinheitlichender For-
malismus für die Modellbildung, sowie mehrere darauf beruhende Modelle
und Algorithmen. Sie gliedert sich in drei wesentliche Abschnitte.

Zunächst wird Layout in Kapitel 2 als Optimierungsproblem hergeleitet.
Gute räumliche Anordnungen in Diagrammen entsprechen dabei den Minima
von Bewertungsfunktionen, die aus gewichteten Einzelkriterien zusammen-
gesetzt sind. Dieser Ansatz ist sehr allgemein und flexibel, da beliebige Ein-
zelkriterien wie hinreichender paarweiser Abstand bestimmter graphischer
Elemente, bevorzugte Positionen, usw. auf unterschiedliche Weise kombiniert
werden können. Darüber hinaus kann gezeigt werden, daß sich das Layout
dynamischer, d.h. mit der Zeit verändlicher, Graphen durch Hinzunahme von
Stabilitätskriterien uniform auf das statische Problem zurückführen läßt.
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In Kapitel 3 wird anhand dreier Fallstudien demonstriert, daß sich die
Formulierung über Einzelkriterien vor allem zur experimentellen Bestimmung
von Bewertungsfunktionen für Graphen aus Anwendungsgebieten eignet, für
die noch keine befriedigenden Layoutvorschriften vorliegen. Die untersuchten
Graphen repräsentieren Soziale Netzwerke, dynamische WWW-Links und
Fahrplangraphen von Zug- und Fährverbindungen. In allen drei Fällen wer-
den neue, auf den spezifischen Informationsgehalt der Graphen zugeschnit-
tene Modelle entwickelt.

Das wesentliche Ergebnis in Kapitel 5 ist schließlich ein Verfahren zum
dynamischen Layout von Diagrammen, in denen alle Verbindungslininen ach-
senparallel verlaufen sollen (wie zum Beispiel in Schaltplänen häufig der Fall).
Dazu wird ein wichtiges Verfahren aus der Literatur um die in Kapitel 2
hergeleiteten Stabilitätskriterien erweitert. Da das statische Verfahren auf
Netzwerkflüssen beruht, können diese Kriterien als Zielwerten für den Fluß
gedeutet werden. Durch Modifikation des Netzwerkes können optimale dyna-
mische Layouts wie im statischen Fall effizient über Flüsse minimaler Kosten
bestimmt werden.

Wo dies geboten erschien, sind aus der Literatur bekannte Verfahren
und Ergebnisse, zum Teil in neuer Darstellung, eingefügt. Alle vorgestell-
ten Ansätze wurden implementiert, und zahlreiche Abbildungen zeigen die
erzielten Resultate.
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Chapter 1

Introduction

When lost in an unknown metropolitan area, many simply enter the next
metro station and return to a known place. The ease of applying this strategy
is partly due to the schematic maps featured by metros all over the world.
Diagrams like in Figure 1.1(a) make it easy to find a suitable route, even
without speaking the local language.

The effectiveness of their simplistic, yet information dense design be-
comes evident when compared to geographically more accurate maps as in
Figure 1.1(b). Note that in both maps train routes are coded using color
(matching lines even with the same color) and connecting stations are coded
using a special shape.

The decisive difference of these two maps is their layout. Even though
only horizontal, vertical, and diagonal lines are used in order to reduce visual
complexity, the geographically inaccurate schematic map resembles the true
courses fairly well. Equidistant stops along straight segments reflect the way
passengers measure distances, namely by counting stops. Instead of using an
additional window, the dense and highly frequented center is enlarged with
respect to the surroundings.

The purpose of schematic railway maps, and hence the objective of their
layout, is clearly not to display the exact geographical location of stations,
but to ease the inference of travel information. The essence of this infor-
mation is given by the graph of existing connections, i.e. the way in which
stations are linked by railway lines. The maps in Figure 1.1 are therefore
examples of graph visualizations, and it is their layout that dominates their
utility.

Visualization of graphs is conventionally called graph drawing (Di Battista
et al., 1994, 1999; Brandenburg et al., 1997). While this sounds like an artistic
endeavor, aesthetically pleasing pictures are not our primary goal. From
an information visualization perspective, graph drawing aims at effective

1



2 CHAPTER 1. INTRODUCTION

(a) First schematic map of underground railway lines (designed by Harry Beck,
first published in 1933 by London Transport). Garland (1994) reviews the history
of the design seminal for the now familiar look of public transportation maps

(b) Geographically accurate map of London’s underground railway lines as
of 1998 (from the Jubilee Line Extension web site http://www.jle.lul.co.uk/

misc/tubeinfo/alternativemap.htm)

Figure 1.1: Different layout of graph visualizations
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communication of the information represented by the graph. This thesis is
about automatic layout of graph visualizations. Its scope is delineated in
Chapter 2, where graph drawing is embedded in the context of graphical
presentation, and a uniform formalism for layout is developed.

Graphs to be visualized arise in different contexts and thus represent
different kinds of information. Three case studies, in which layout meth-
ods for graphs representing structures as distinct as social networks, links
among web pages, and train connections are derived, form the centerpiece
of Chapter 3. These methods are based on an analogy to physical systems
of objects that are subject to various forces, and they determine positions
for graphical primitives directly. Some properties of the classic barycentric
approach sharing this physical analogy are outlined in Chapter 4. One of its
main drawbacks then motivates the consideration of layout approaches that
employ an intermediate step in which angles formed by graphical primitives
are determined prior to positioning. Several aspects of such approaches are
discussed in Chapter 5, and an extension to graphs that change over time is
introduced for a popular schematic layout method that uses only horizontal
and vertical lines. Content and contributions of this thesis are reviewed in
more detail in Chapter 6.
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Chapter 2

A Formal Framework

Aware that the intuitive use of many terms in graph drawing can be rather
confusing, we here attempt to provide a framework for layout of graph vi-
sualizations that is thoroughly formal. Naturally, the object of interest is
defined first.

A graph G = (V,E) is a pair of vertices V = {v1, . . . , vn} and edges
E = {e1, . . . , em}, where each edge e ∈ E is an ordered or unordered pair of
vertices. An ordered pair e = (u, v) ∈ V × V is called a directed edge, while
an unordered pair e = {u, v} ⊆ V is called an undirected edge. In case u = v,
e is called a (directed or undirected) loop. If E is a multiset, edges with
multiplicity greater than one are called multiple edges. If we explicitly allow
loops or multiple edges, the graph is also called a multigraph, otherwise it is
a simple graph. Speaking of graphs, we usually refer to simple, undirected
graphs.

Two vertices of a graph are adjacent , if they are connected by an edge.
A vertex and an edge are incident , if the vertex is part of the edge. Two
edges are incident, if they share a vertex. The number of edges incident to
a vertex v is called the degree, dG(v), of that vertex. In graphs that contain
directed edges, it makes sense to define the indegree (outdegree) of a vertex
to be the number of incident edges that are either not directed or do not have
the vertex as their first (second) component. Further graph terminology is
defined only when needed.

We are going to derive graph visualization as a form of presenting rela-
tional data. Three crucial aspects of graphical presentation of graphs, and
information visualization in general, are identified. Since layout is the main
difficulty in the design of a graphical presentation of relational data, a uni-
form formalism for layout specification is provided. General methods for
layout computation and some remarks about their implementation conclude
the chapter.

5



6 CHAPTER 2. A FORMAL FRAMEWORK

2.1 Graph Visualization

The purpose of data presentation is to reveal information buried in a set of
data either to the analyst (exploration), or to those interested in it (com-
munication). A presentation is said to be effective, if it conveys the true
information in an easily comprehensible, yet precise, way. Since the ground-
breaking work of Lambert, Playfair, and others in the 18th century (Tilling,
1975), much effort has been devoted to the development of guidelines for ef-
fective presentation of categorical data (Tukey, 1977; Tufte, 1983; Cleveland,
1985, 1993), whereas formal methods for visualizing relational data are still
not far from their infants. In this section, some of the more general insights
into the technicalities of presenting graphs are reviewed. See also Mackinlay
(1986) or Eick (1996).

2.1.1 Forms of Presentation

When relational data is to be explored or communicated, there are three
basic forms in which it can be presented to the recipient: textual, tabular,
and graphical. Each of these has its own advantages and disadvantages, and
ideally they are used in a symbiotic combination (Mahon, 1977).

Textual Presentation. Probably the most precise and flexible, but also
a very inconvenient way of presenting a graph. It usually consists of lists of
vertices and edges as in Figure 2.1(a).1 However, further explanations and
calculations may accompany the raw data. Since textual presentations are
essentially sequential, even core statements are difficult to memorize and to
put into context. Best suited for elaborate or tricky explanations.

Tabular Presentation. Typically an adjacency or incidence matrix. E.g.,
the adjacency matrix A(G) = (au,v)u,v∈V of an undirected, simple graph
G = (V,E) is defined by

auv =

{
1 if {u, v} ∈ E
0 otherwise

whereas its incidence matrix I(G) = (ive)v∈V,e∈E has entries

ive =

{
1 if v ∈ e
0 otherwise

1Observe that a WordgraphTM (Garvey, 1998) is not a pure textual presentation, but
a two-dimensional spatial alignment of text labels.
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As is illustrated in Figure 2.1(b), tabular presentations are more compact
than textual ones. The main degrees of freedom are coding of the entries
and ordering of rows/columns, to a limited extent allowing to represent un-
derlying structural patterns. It is difficult to represent additional information
like, for instance, vertex attributes and more complex structural properties.
Best suited for data transmission.

Graphical Presentation. More flexible than tabular presentation and
still reasonably compact. Figure 2.1(c) illustrates why graphical presenta-
tion is more convenient and appealing. Visual clues are also much easier
memorized and contextualized, but offer less flexibility, especially for ab-
straction. A unique advantage is ability to switch between many different
levels of detail without loosing context.

2.1.2 Aspects of Visualization

If relevant information is expressed by honestly generated visual clues, the
transformation of data into graphical presentations is called information visu-
alization. An ideal visualization would, in the shortest amount of time, reveal
to its reader the information, the whole information, and nothing but the in-
formation represented by the data. A visualization method should therefore
clearly identify the relevant kind of information, define an appropriate map-
ping of this information to the elements of a graphical presentation, and
generate images accordingly. We refer to these three aspects as substance,
design, and algorithm, respectively.

Substance. Graphs are used to model relational information in an ab-
stract, to the application of general methods and derivation of general state-
ments amenable way. However, the underlying domain-specific meaning of
the graph is the essence of what is to be recognized in a graphical presenta-
tion. We call the information that is to be explored or communicated when
presenting a particular graph its substance. Consequently, a graphical pre-
sentation should be prepared in close accordance with the substance to be
conveyed. Any open, i.e. unspecific, data presentation is either confusing –
a “crypto-graphical mystery” (Tufte, 1983, p. 153) – or ambiguous. In both
cases, it might even suggest false information.

Substance can be divided into syntactic information comprised solely of
the graph’s structure, no matter what is actually represented, and semantic
information not captured by the binary relation alone. The case study on so-
cial networks in Section 3.2 contains concrete examples for the syntactic and
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V = { Acciaiuoli, Albizzi, Barbadori, Bischeri, Castellani, Ginori, Guadagni, Lamberteschi,
Medici, Pazzi, Peruzzi, Pucci, Ridolfi, Salviati, Strozzi, Tornabuoni }

E = { { Acciaiuoli, Medici }, { Albizzi, Ginori }, { Albizzi, Guadagni }, { Albizzi, Medici },
{ Barbadori, Castellani }, { Barbadori, Medici }, { Bischeri, Lamberteschi },
{ Bischeri, Peruzzi }, { Bischeri, Strozzi }, { Castellani, Peruzzi },
{ Castellani, Strozzi }, { Guadagni, Lamberteschi }, { Guadagni, Tornabuoni },
{ Medici, Ridolfi }, { Medici, Salviati }, { Medici, Tornabuoni },
{ Pazzi, Salviati }, { Peruzzi, Strozzi }, { Ridolfi, Strozzi }, { Ridolfi, Tornabuoni } }

(a) Textual Presentation
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Acciaiuoli . . . . . . . . 1 . . . . . . .
Albizzi . . . . . 1 1 . 1 . . . . . . .

Barbadori . . . . 1 . . . 1 . . . . . . .
Bischeri . . . . . . 1 . . . 1 . . . 1 .

Castellani . . 1 . . . . . . . 1 . . . 1 .
Ginori . 1 . . . . . . . . . . . . . .

Guadagni . 1 . 1 . . . 1 . . . . . . . 1
Lamberteschi . . . . . . 1 . . . . . . . . .

Medici 1 1 1 . . . . . . . . . 1 1 . 1
Pazzi . . . . . . . . . . . . . 1 . .

Peruzzi . . . 1 1 . . . . . . . . . 1 .
Pucci . . . . . . . . . . . . . . . .

Ridolfi . . . . . . . . 1 . . . . . 1 1
Salviati . . . . . . . . 1 1 . . . . . .
Strozzi . . . 1 1 . . . . . 1 . 1 . . .

Tornabuoni . . . . . . 1 . 1 . . . 1 . . .

(b) Tabular Presentation

Pucci

Ridolfi Tornabuoni

Strozzi

Bischeri

Peruzzi

Lamberteschi

Guadagni

Albizzi

Ginori
AcciaiuoliPazzi

Salviati

Barbadori

Castellani

Medici

(c) Graphical Presentation

Figure 2.1: Basic forms of graph presentation. Data from Padgett and Ansell
(1993), who explain the rise of the Medici family from its marriage (depicted)
and business ties
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semantic substance of graphs in one particular domain, making the reason
for this distinction more obvious.

Design. Unlike the way it is commonly understood, design does not focus
on aesthetics, beauty, or elegance. As designer Conran (1996) puts it, de-
sign incorporates 98% function and 2% aesthetics. Visualization design is
the specification of how substance is mapped to graphical elements. The in-
formation visualization perspective on graph drawing implies that the most
important aspect of choosing a specification is the effective communication
of substance rather than a beautiful and impressive picture. Aesthetics may
play a role in speeding up perception, though. We call the ease of reading
the ergonomics of a visualization. The effectiveness of a design depends on
how well the substance is recognized from a visualization.

When Tufte (1983, p. 191) states that “design is a choice” he essentially
points to the facts that graphical presentations of the same data can look
very different, and that their quality can vary significantly. Consequently,
visualization should not merely be seen as an instrument to decorate num-
bers.

Experimental studies recently validated the effect of different properties
of graph visualizations on the understanding of relational structures in gen-
eral (Purchase et al., 1997; Purchase, 1997), and of domain specific sub-
stance (Blythe et al., 1996; McGrath et al., 1998). However, there is little
work on how to assess the relative effectiveness of specific visualization tech-
niques. We therefore choose an example from the literature on categorical
data presentation to illustrate how the quality of visualizations can differ
beyond technical brilliance (see Tufte, 1983, pp. 66ff). The example in Fig-
ure 2.2 clearly shows how the same data can be presented in very different
ways. Apart from the fact that the second graph yields a much calmer
view, leaving behind the distortion in the “chartjunk” (Tufte, 1983) of the
first graph, it also does not generate the false impression of a substantial
and continuous increase in spending. As Tufte convincingly shows, the first
graph deploys several visual and statistical tricks to exaggerate the budget,
which does not really increase when put in relation to population size.

The question why one form of graphical presentation of categorical data is
more effective than another has been analyzed in great detail by Tufte (1983,
1990, 1997) and a number of other authors (e.g. Müller, 1991; Wainer, 1997).
Tufte (1983, p. 51) lists the following principles of graphical excellence:

• Graphical excellence is the well-designed presentation of interesting
data—a matter of substance, of statistics, and of design.
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Figure 2.2: From chartjunk to graphical excellence (Tufte, 1983, p. 66/68)

• Graphical excellence consists of complex ideas communicated with clar-
ity, precision, and efficiency.

• Graphical excellence is what gives to the viewer the greatest number
of ideas in the shortest time with the least ink in the smallest space.

• Graphical excellence is nearly always multivariate.

• And graphical excellence requires telling the truth about the data.

Algorithm. The procedures used to realize a design specification for the
substance of a given graph constitute an aspect that may be equally impor-
tant. Not only because of runtime considerations, but also because perfect
satisfaction of the requirements manifested in a design may not be possible.
For instance, a design might require all edges to be represented by straight-
line segments of equal length. This clearly is impossible for many graphs.
Any algorithm therefore necessarily introduces artifacts or misleading ar-
rangements, even when it gives the best possible solution (with respect to
some deviation measure). Moreover, existing approaches to graph drawing
often use an algorithm that does not implement a specified design, but im-
plicitly specifies one. It is hence important to be aware of the algorithm, and
its peculiarities, underlying a visualization process.

2.1.3 Graphical Design

As analyzed in the pioneering work of graphic designer Bertin (1983), a
graphical presentation is composed of a number of topological primitives
called graphical features. Each graphical feature has a number of properties,
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graphical features
point
curve
area

volume

graphical variables
positional x-, y-, z-coordinate

retinal size, shape, orientation,
brightness, color, transparency,
texture

temporal movement and other dynamics

Figure 2.3: Primitives of graphical presentations and their properties (Bertin,
1983, updated)

called graphical variables, that may be fixed in advance or varied according to
the data. Figure 2.3 lists graphical features for presentations in up to three
dimensions together with graphical variables relevant on standard media.

Since the design of a graphical presentation specifies how substance is
mapped to graphical variables, it can be subdivided into three major com-
ponents:

• A representation prescribing what kind of feature is to represent which
item of a graph and, possibly, constraining selected graphical variables.
Graphs, and sometimes only certain classes of graphs, can be repre-
sented in various ways. Figure 2.4 gives some of the more common
examples. Throughout this thesis, we only consider representations
mapping vertices to points and edges to curves.

• An effective and ergonomic layout , i.e. a specification of constraints
and criteria for suitable values of graphical variables that determine
topological and geometric properties of the presentation.

• An effective and ergonomic rendering , i.e. a specification of suitable
values for graphical variables that are not yet fixed by representation
or layout.

Using experimental evidence, Cleveland and McGill (1984) rank graphical
variables according to their effectiveness and accuracy in coding information.
Mackinlay (1986) extends and details this list, though no further experiments
are carried out to validate these extensions. It seems of no doubt that posi-
tional properties, and hence layout considerations, are of utmost importance.

2.2 Layout

To uniformly describe different graph layout strategies, we develop a fairly
general formalism to articulate them in a precise, yet flexible and convenient,
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(a) 2D straight-line: Vertices
are represented by points in the
plane, edges by straight lines.
Winning entry for Graph B of
the 1997 Graph Drawing Con-
test (Eades et al., 1997), submit-
ted by Batagelj and Mrvar

(b) Coin graph: Vertices are repre-
sented by discs, edges implicitly by
touching of discs. K5 with one edge
removed. Redrawn from Brightwell
and Scheinerman (1993)

(c) 3D orthogonal: Vertices are rep-
resented by points in space, edges by
sequences of axis-parallel straight-line
segments. K7 with two bends per
edge. Layout by Wood (1996), view-
point by Webber (1998)

Klassische Moderne

Impressionism

Kubism

Futurism

Expressionism

Fauve

Die Bruecke

Blauer Reiter

Pointilism

(d) 2D inclusion: Vertices are rep-
resented by areas, edges implic-
itly by area inclusion. Redrawn
from Kamps et al. (1996)

Figure 2.4: Graph representations. Note that coin graph and 2D inclusion
representation are feasible only for restricted classes of graphs
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manner. Essentially, graph layout is modeled in terms of constraint optimiza-
tion. Other formalisms for graph layout are described in Mackinlay (1986),
Ding and Mateti (1990), Marks (1991), and Bertolazzi et al. (1995).

2.2.1 Layout Models

According to the observations made above, graph layout is the specification
and realization of topological and geometric properties of graphical presenta-
tions of graphs. The properties to be determined are represented in a set of
variables. Since a design might restrict the configuration space, constraints
may be imposed on feasible combinations of their values. An objective func-
tion measures how well a layout meets design criteria.

Layout Elements. Given a graph and a prescribed representation, each
topological or geometric property that is to be determined for some graphical
feature is a layout element. The layout elements of a straight-line representa-
tion, for instance, are simply the positional variables of point features repre-
senting vertices. In this case, vertices and layout elements can be identified.

In general there is a set L = {λ1, . . . , λs} of layout elements, and for
each λ ∈ L let there be a set Xλ of feasible values of the respective variable.
Then, every vector x ∈ X = Xλ1 × · · · × Xλs is called a layout . We write
xΛ = (xλ)λ∈Λ for the partial layout of all layout elements in Λ ⊆ L.

Constraints. Certain values for one layout element may prohibit otherwise
feasible values of other layout elements. In Figure 2.4(a), clustered vertices
are constrained to have the same x-coordinate. To capture such restrictions,
let R{λi1 ,... ,λik} ⊆ Xλi1 × · · · × Xλik , 1 ≤ i1 < . . . < ik ≤ s, be a k-ary
constraint, Rk =

⋃
1≤i1<...<ik≤sR{λi1 ,... ,λik} be the set of all k-ary constraints,

and R =
⋃k
i=1Rk the set of all constraints. Then,

X ∩ R def
= {x ∈ X : xΛ ∈ RΛ for all RΛ ∈ R,Λ ⊆ L}

is the set of all feasible layouts. For convenience we also use X ∩ R, or
X ∩R′, to denote those layouts fulfilling a specific constraint R ∈ R, or a
set of constraints R′ ⊆ R, respectively.

Objective functions. It was already indicated that some layouts are more
effective than others in conveying the substance of a graph. Likewise, some
graph layouts are more ergonomic than others. To assess the effectiveness
and ergonomics of a layout x, an objective function U : X ∩R → �

measures
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(a) random layout (b) ergonomic layout

Figure 2.5: Different layouts of an abstract graph

conformance with design criteria. For convenience this objective function is
usually defined for infeasible layouts as well, i.e. U : X → � . Unfortunately,
it seems rather difficult to devise such global objective function assessing the
effectiveness of a given layout directly.

Figure 2.5 shows two different layouts of the same abstract graph. Shaded
areas indicate ergonomic problems like vertices that are too close to each
other, edges that are too long, vertices that are too close to edges, or pairs
of edges forming narrow angles. These undesirable configurations are local
in the sense that they involve only few layout elements. We hence base
objective functions on design criteria for configurations of (mostly) small
subsets of layout elements. Each criterion evaluates, how bad a particular
local configuration is. Therefore, the objective function is defined as a cost
function combining local criteria. It is to be minimized over X ∩R to obtain
an effective and ergonomic layout.

The interaction of layout elements jointly appearing in layout criteria is
modeled by an interaction graph G = (L, E) obtained from a neighborhood
system η =

⋃
λ∈L ηλ, where the neighborhood ηλ ⊆ L \ {λ} is the set of

layout elements for which the value assigned to λ is relevant in terms of
layout quality. Since these interactions are assumed to be symmetric, we have
λ2 ∈ ηλ1 ⇔ λ1 ∈ ηλ2 for all λ1, λ2 ∈ L, so G is undirected. Let C = C(η)be a
set of cliques in G, i.e. the set of all subsets C ⊆ L with {λ1, λ2} ∈ E for all
pairs λ1, λ2 ∈ C. The badness of a configuration on C ∈ C is expressed using
an interaction potential (or potential for short), which may be any function
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UC : X → � for which

xC = yC ⇒ UC(x) = UC(y)

holds for all x, y ∈ X . Our objective function is the linear combination of
all potentials, U(x) =

∑
C∈C UC(x). While UC is sometimes called a local

criterion, U(x) is called the energy of layout x.

We call U : X ∩R → � the layout model, because it summarizes the
part of a graphical design that specifies layout elements, constraints on the
combination of their values, and criteria for good layout. The energy is easily
recognized to induce a Gibbs distribution which assigns probabilities

P (X = x) =
1

Z
e−U(x)

where Z =
∑

y∈X e
−U(y) is a normalizing constant, to layouts x ∈ X . Random

variable X is hence a Gibbs random field. For simplicity we call U , X, and its
distribution PX a random field layout model for G. Probabilities P (X = x)
depend on the energy only, with a layout of low energy being more likely
than a layout of high energy. Since Gibbs distributions are at the heart of
thermodynamics and statistical mechanics, they are well studied in many
respects (Guyon, 1995; Li, 1995; Winkler, 1995). A primer on the utilization
of random field theory is the development of a framework for dynamic layout
models in Section 2.2.2.

Two layout approaches are usually distinguished in the literature on graph
drawing: declarative and algorithmic (Cruz and Tamassia, 1994). In declar-
ative graph layout, users are typically allowed to specify a set of constraints
like spatial clustering, alignment, etc. The system then tries to satisfy these
constraints either completely or as many as possible. Due to the inherent
complexity of the resulting constraint satisfaction problems, these systems
are usually slow. In algorithmic graph layout, the emphasis is on criteria of
layout quality defining the objective function. Minimization of a suitable ob-
jective function is more efficient than constraint solving in general. Moreover,
the focus on algorithms often allows to decompose a strategy into steps that
are shared by other strategies. Like in most of the graph drawing literature,
the focus of this thesis is on algorithmic approaches to graph layout.

2.2.2 Dynamic Layout Models

Up to now graphs were considered static objects. We here develop a generic
approach to layout of a dynamic graph, i.e. a sequence of graphs arising from
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repeated modification of an initial graph. These modifications may be due to
user interaction, algorithms, or other underlying processes determining the
graph.

Looking at graphical presentations of graphs, users develop a mental map
of the diagram (Eades et al., 1991). When a diagram changes, this mental
map should be preserved as closely as possible to enable users to easily regain
familiarity with the presentation. Until now, there are only few approaches
to dynamic graph layout, most of them tied to specific classes of admissible
graphs or representations (Böhringer and Paulisch, 1990; Cohen et al., 1992,
1995; North, 1996a). We essentially argue that dynamic graph layout can be
regarded a special case of static layout, where an additional criterion captures
the notion of stability between consecutive layouts.

A general analysis of the dynamic layout problem is given in North
(1996a). Dynamic layout is considered to consist of a sequence of static
layout problems subject to consistency (retain important properties), sta-
bility (allow only moderate changes), and readability (good static design)
demands. Furthermore, the logical update from one layout to the next may
be extended into a sequence of physical updates to ease the transition. This
method of gradual transformation will be used in our case study of a dynamic
graph in Section 3.3. The purpose of this section is to provide a seamless
integration of dynamic layout in our general layout formalism.

Let there be a (finite or infinite) sequence of graphs G(1), G(2), . . . , for
which (static) layout models X(1), X(2), . . . are given. The assumption of
an infinite sequence is appropriate when the graph is modified unpredictably.
Such situations occur in user interaction, network control, phone-call record-
ing, and so on. In these cases, neither the next graph, nor the number of
graphs to come is known at any point in time.

In analogy to the above definition of a random field layout model, we
now want to construct a random vector (X(1), X(2), . . . ) that describes the
relative effectiveness of all sequences of layouts, such that optimal sequences
correspond to modes of the joint distribution P (X(1),X(2),... ). Before we go
into the details of how to use this approach to devise suitable models, let’s
first get a feel for what this means. In the case of independent layout models,
we have

P
(
X(1) = x(1), X(2) = x(2), . . .

)
=
∏

i

P
(
X(i) = x(i)

)

Independent random fields correspond to a strategy that layouts each indi-
vidual graph according to its own model and does not care about the user’s
mental map (except for, possibly, in the physical update). An optimal se-
quence is hence computed by individually maximizing all P (X(i) = x(i))
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over x(i) ∈ X (i). Since gradual transitions between consecutive layouts are
intended, dependencies among the individual models must be introduced.

The joint probability of a finite sequence G(1), . . . , G(t) can be rewritten
into conditional (transition) probabilities

P
(
X(1) = x(1), . . . , X(t) = x(t)

)
=

t∏

i=1

P
(
X(i) = x(i)

∣∣X(< i) = x(< i)
)

where X(< i) = x(< i) is shorthand for X(1) = x(1), . . . , X(i−1) = x(i−1).
However, knowledge of all graphs and dependencies is required to obtain
any x(i) of a sequence x(1), . . . , x(t) that maximizes the expression. Such
knowledge is typically not provided.2 It seems therefore reasonable to restrict
our attention to the case that each layout of the sequence (finite or infinite)
has to be computed before anything about the next graph is known.

With no look-ahead available, we obtain the following formalization of the
dynamic layout problem. At time t > 1, we are given graphs G(1), . . . , G(t),
static layout models X(1), . . . , X(t), and layouts x(1), . . . , x(t−1). The goal
is to compute a layout x(t) ∈ X (t) that forms a compromise between stability
and readability. Obviously, the conditional probability P (X(t) = x(t) |X(<
t) = x(< t)) must reflect this notion of compromise. It is hence called the
dynamic layout model of G(t), and because of the following considerations it
is reasonable to maximize this probability.

Suppose, loss : X (t) × X (t) → {0, 1} is the (imaginary) zero-one loss
function of choosing x(t), when the best choice is x,

loss(x(t), x) =

{
0 if x(t) = x
1 if x(t) 6= x

With this loss function, the risk
∑

x∈X (t) loss(x(t), x) ·P (X(t) = x |X(< t) =

x(< t)) = 1 − P (X(t) = x(t) |X(< t) = x(< t)) of selecting x(t) equals
the average probability of error. It is minimized by choosing an x(t) for
which P (X(t) = x(t) |X(< t) = x(< t)) is maximized. Observe that other
measures of loss yield other decision rules.

In the remainder of this section, we propose a Bayesian approach for
specifying dynamic layout models, which basically provides a formalization
of common sense. Note that, by Bayes’ rule,

max
x(t)∈X (t)

P
(
X(t) = x(t)

∣∣X(< t) = x(< t)
)

= max
x(t)∈X (t)

P
(
X(< t) = x(< t)

∣∣X(t) = x(t)
)
· P
(
X(t) = x(t)

)

P
(
X(< t) = x(< t)

)

2Observe that there are applications, like animation, where the complete sequence
might indeed be known in advance.
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which is proportional to

max
x(t)∈X (t)

P
(
X(< t) = x(< t)

∣∣X(t) = x(t)
)
· P
(
X(t) = x(t)

)

The term P (X(t) = x(t)) is of course the static layout model for G(t). It
therefore reflects the notions of consistency and readability formalized in
X(t). P (X(< t) = x(< t) |X(t) = x(t)) is the likelihood of the sequence
x(1), . . . , x(t − 1) to lead to an assumed layout x(t) of G(t). We have thus
found a place to incorporate the notion of stability, which is why P (X(<
t) = x(< t) |X(t) = x(t)) is called the stability model.

In summary, we have argued that a dynamic layout model for a graph
G(t) can be composed using its static layout model PX(t)

, and a measure
P (X(<t)|X(t)) of change with respect to layouts x(1), . . . , x(t − 1) of preced-
ing graphs. If this measure is formulated in terms of a Gibbs distribution
with energy function U (X(<t)|X(t)), the dynamic layout model is also a Gibbs
distribution with energy function

U (X(t)|X(<t))
(
x(t)

∣∣ x(< t)
)

= U (X(<t)|X(t))
(
x(< t); x(t)) + UX(t)(x(t)

)

which leads to the conclusion that it is reasonable to incorporate stability
as just another criterion in an objective function.

We have thus developed an abstract formulation of a general principle for
dynamic graph layout that complements given static models. Note that in the
particular case of straight-line embeddings Lüders et al. (1995) arrived at the
idea of incorporating stability expressions in the layout objective function on
an ad-hoc basis. Examples for the utilization of stability criteria in dynamic
layout models are given in Sections 3.3 and 5.3.

2.2.3 Layout Computation

Graph layout was formalized as an optimization problem in the previous sec-
tions. Effective and ergonomic layouts are obtained by minimizing an energy
function U(x) =

∑
C∈C UC(x) over all x ∈ X ∩R. Due to the universality

of the problem definition, energy minimization is easily seen to be NP-hard
in general. We here give a simple proof showing that the problem remains
NP-hard even for very restricted models.

Theorem 2.1 Energy minimization for random field layout models defined
on graphs G = (V,E) is NP-hard, even if L = V , G = G, C = E, X =
{0, 1}L, and U contains at most quadratic terms.
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�
Proof The corresponding decision version is obviously in NP. To show

that it is NP-complete, we transform an arbitrary instance G = (V,E) of
SIMPLE MAX CUT (unit weight variant of problem [ND16] in Garey and
Johnson 1991) into a random field layout model X of G, such that there is
a layout of energy |E| − k, if and only if there is a cut with k edges. Using
interaction potentials

U{u,v}(x) = xu · xv + (1− xu) · (1− xv) =

{
0 if xu 6= xv
1 if xu = xv

for all edges {u, v} ∈ E, a layout x ∈ {0, 1}V is assigned an energy equal to
the number of edges that have the same value assigned to both endpoints. �

The prototyping approach taken in Chapter 3 usually leads to NP-hard
models. In the remainder of this section we therefore review optimization
techniques for approximate minimization of arbitrary energy functions. A
number of interesting special cases do allow for efficient optimization, though.
Examples of such cases are the subject of Chapters 4 and 5, while many others
are listed in the graph drawing bibliography (Di Battista et al., 1994) and in
Di Battista et al. (1999).

Locality. Local criteria for good graph layout are usually conflicting. This
and the fact that we are concerned with graphical presentation rather than
technical applications of graph layout indicate that optimality of a layout
might not be a prerequisite. In many cases, locally optimal solutions will
be satisfactory. They can be obtained by local search methods that itera-
tively improve an initial layout by changing the value of, typically, only a
single layout element. The following observation is crucial for most iterative
methods.

Lemma 2.2 For every random field layout model X,

P
(
Xλ = xλ

∣∣XL−λ = xL−λ
)

= P
(
Xλ = xλ

∣∣Xηλ = xηλ
)

=
1

Zλ
e− � C∈C :λ∈C UC(x)

where Zλ =
∑

xλ∈Xλ
e− � C∈C :λ∈C UC(x).

�
Proof

P (Xλ = xλ |XL−λ = xL−λ) =
P (X = x)

P (XL−λ = xL−λ)

=
Z−1 · exp {−U(x)}∑
xλ
Z−1 · exp {−U(x)} =

exp
{
−∑C∈C UC(x)

}
∑

xλ
exp

{
−∑C∈C UC(x)

}
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and, since UC(x) is independent of xλ if λ 6∈ C,

=
exp

{
−∑C∈C :λ6∈C UC(x)

}
· exp

{
−∑C∈C :λ∈C UC(x)

}

exp
{
−∑C∈C :λ6∈C UC(x)

}
·∑xλ

exp
{
−∑C∈C :λ∈C UC(x)

}

=
exp

{
−∑C∈C :λ∈C UC(x)

}
∑

xλ
exp

{
−∑C∈C :λ∈C UC(x)

}

which is the second equality, and finally

=
exp

{
−∑C∈C :λ∈C UC(x)

}
∑

xλ
exp

{
−∑C∈C :λ∈C UC(x)

}

·
∑

xλ′ :λ′ 6∈ηλ∪{λ} exp
{
−∑C∈C :λ6∈C UC(x)

}
∑

xλ′ :λ′ 6∈ηλ∪{λ} exp
{
−∑C∈C :λ6∈C UC(x)

}

=

∑
xλ′ :λ′ 6∈ηλ∪{λ} exp

{
−∑C∈C :λ∈C UC(x)

}
∑

xλ′ :λ′ 6∈ηλ exp
{
−∑C∈C :λ∈C UC(x)

}

=
P (Xηλ∪{λ} = xηλ∪{λ})

P (Xηλ = xηλ)
= P (Xλ = xλ |Xηλ = xηλ)

�

The probabilities appearing in the above lemma are called the local char-
acteristics of the random field.3 They describe the benefit of assigning xλ to
layout element λ, when the value of every other layout element λ′ ∈ L − λ
is fixed to be xλ′ . Lemma 2.2 states that these probabilities depend only on
the neighbors of λ. The best value of xλ, given all the others, is obtained
by maximizing this probability or, equivalently, minimizing the local energy∑

C∈C:λ∈C UC(x) over Xλ.
By repeatedly minimizing the local energy of a layout model for each

λ ∈ L, a local minimum of its (unconstrained) energy is obtained. This
method is introduced in Besag (1986), where it is called iterated conditional
modes (ICM). It is known to display rapid convergence to a local minimum
of the global energy. Several graph layout algorithms are closely related to
this method (Eades, 1984; Kamada and Kawai, 1989; Sugiyama and Misue,
1995), but require differentiable energy functions. The following method does
not impose restrictions on the class of interaction potentials.

3If P (Xλ = xλ| XL−λ = xL−λ) = P (Xλ = xλ| Xηλ = xηλ) holds for all λ ∈ L, the
random field is said to satisfy the Markov property. If a strictly positive random field is
defined in terms of consistent local characteristics, it is called a Markov random field. An
important result from stochastic theory states that Markov and Gibbs random fields are
equivalent with respect to the same interaction graph (a detailed proof is contained in,
e.g., Griffeath, 1976).
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Annealing. A common way of avoiding poor local minima is the use of
annealing-type algorithms. Simulated annealing is a general optimization
method for large-scale combinatorial problems, first introduced in Metropo-
lis et al. (1953) and Kirckpatrick et al. (1983). Elaborate treatments are given
by Aarts and Korst (1989) and van Laarhoven and Aarts (1988). Roughly
speaking, the algorithm iteratively modifies a candidate layout. In each iter-
ation, the modified layout is either accepted to be the new candidate layout,
or it is rejected. It is accepted, if its energy is smaller than the energy of
the current candidate. In order to avoid poor local minima, layouts with
higher energy are accepted with probability e−∆U/T , where ∆U is the energy
difference and T > 0 the parameter of the annealing, the temperature.4 Con-
vergence is enforced by slowly lowering T according to some cooling schedule.

We therefore parameterize a random field with the real valued tempera-
ture T > 0. The joint distribution becomes

P (X(T ) = x) =
1

Z(T )
e−U(x)/T

where Z(T ) =
∑

y∈X exp {−U(y)/T}. The temperature parameter controls
the effect of the energy function on the joint distribution. For higher values
of T , PX(T ) is close to a uniform distribution over all layouts, while the
distribution peaks more sharply for smaller values of T . In a temperatured
random field X(T ), the local characteristics become

P (Xλ(T ) = xλ | Xηλ(T ) = xηλ) =
1

Zλ(T )
exp

{
−

∑

C∈C:λ∈C
UC(x)/T

}

where Zλ(T ) =
∑

xλ∈Xλ exp {−U(x)/T}. The so-called Gibbs sampler (Ge-

man and Geman, 1984) approximates PX(T ) by repeatedly sampling from
these temperatured local characteristics. Since limT↓0 PX(T ) is the uniform
distribution over all layouts of minimum energy, T is decreased over time to
obtain a mode of the original distribution.

Without going into too much detail, we can gain some insight about the
relation to simulated annealing by considering two layouts x and y that differ
only in the value assigned to one layout element λ, i.e. a typical pair of can-
didate and modified candidate layout. The ratio of their local characteristics

4Note that “temperature” is sometimes also used to denote an adaptive parameter
controlling the displacement in gradient search approaches like the one of Fruchterman
and Reingold (1991).
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with respect to λ is

P (Xλ(T ) = yλ | Xηv(T ) = yηλ)

P (Xλ(T ) = xλ | Xηv(T ) = xηλ)
=

Z−1
v (T ) · exp

{
− ∑

C∈C:λ∈C
UC(y)/T

}

Z−1
v (T ) · exp

{
− ∑

C∈C:λ∈C
UC(x)/T

}

= exp

{
−

∑

C∈C:λ∈C
(UC(y)− UC(x)) /T

}

since yλ′ = xλ′ for all λ′ ∈ L− λ. Clearly,

min

{
1 , exp

{
−

∑

C∈C:λ∈C
(UC(y)− UC(x)) /T

}}

is the acceptance probability of simulated annealing, provided that a new
candidate solution is generated by modifying a single layout element λ. Dur-
ing the algorithm, the energy U(x) need never be computed entirely, since
the transition probabilities depend on the energy differences only. The role
of the interaction graph G is now evident, because an implementation needs
to compute energy differences only on cliques of G that have non-zero inter-
action potentials and contain the respective layout element. Since the above
procedure differs from the Gibbs sampler only in the sampling strategy used
to approximate PX(T ), it is often termed Metropolis sampler. A comparative
study of both algorithms is Chen and Schmeiser (1993).

Simulated annealing is used for graph layout, for instance, in Davidson
and Harel (1996) and Cruz and Twarog (1996), even though it is often disre-
garded because of its computational cost (Brandenburg et al., 1996). How-
ever, faster algorithms based on gradients (Eades, 1984; Kamada and Kawai,
1989; Fruchterman and Reingold, 1991; Frick et al., 1995; Sugiyama and
Misue, 1995) require energy functions with continuous partial derivatives. It
is interesting to note that they directly correspond to the limit case T = 0
of the annealing algorithms and are hence implementations of ICM, i.e. they
are annealing algorithms using a cooling schedule that immediately freezes
the system. Finally notice that quite a number of graph layout algorithms
are implemented in a batch-like fashion (e.g. Eades 1984; Kamada and Kawai
1989; Sugiyama and Misue 1995). A new value is computed independently
for each layout element. Afterwards, all layout elements are updated simulta-
neously. This corresponds directly to a parallel algorithm with synchronous,
independent updates of all layout elements. In general, such algorithms con-
verge to a different limit distribution, and oszillation effects may occur.
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It is important to note that unary constraints cause no difficulties for
general optimization techniques based on annealing. On the other hand,
k-ary constraints with k > 1 in general disconnect the search space. The
introduction of an indicator variable

R(x) =

{
0 if x ∈ X ∩R
1 otherwise

enables us to gradually increase a penalty for infeasible layouts by replacing
the energy with

U(x) + ρ(T ) ·R(x)

where ρ(T ) goes to infinity for T ↓ 0. While Geman et al. (1990) proof that
the annealing process converges in probability to an optimal solution (with
suitably chosen cooling schedules and penalty functions), this method cannot
be expected to be efficient enough to be used in a general optimizer for layout
models.

Thorough treatments of general energy minimization methods are given
in Azencott (1990), Guyon (1995), Winkler (1995), and Li (1995). See also
Pelillo (1997).

Implemented algorithms exist for a huge number of layout models. Many
are available in more general systems like Graphlet (Himsolt, 1996), the
Graph Drawing Server (Bridgeman et al., 1996), and GraVis (Lauer
et al., 1997), or in libraries like GDToolkit5 and AGD (Mutzel et al., 1998).
A drawback of most implementations is that they usually allow but a few
parameters of a layout model to be varied. In most cases, only constants for
minor design variations like desired edge lengths and bounds on the number
of bends an edge may have, or algorithmic parameters like the number of
iterations may be specified.

Genericity is a major concern in the design of the AGD library. How-
ever, the focus is on generic algorithms rather than generic layout mod-
els. Modules implementing steps of popular layout algorithms may be re-
placed with different implementations, but it is by coincidence that, e.g., the
RankAssignmentModule determining levels for layered graph layouts (as in
Sugiyama et al. 1981) also constitutes a major part of the design.

Our graph layout formalization presented in Section 2.2.1 decomposes
the problem into several parts: layout elements, neighborhoods, interaction
potentials, and constraints. The implied separation lends itself to generic
implementation of a flexible layout system, in which these parts are freely

5Project home page at http://www.dia.uniroma3.it/~gdt/.
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combined to form specific models. A prototype version of such a system has
been used to generate layouts from the models described in Chapter 3. The
implementation consists of a set of fundamental neighborhood types and in-
teraction potentials, to which others can be added. Since our concerns are
flexibility and generality, simulated annealing is used for energy minimiza-
tion. The optimization module can nevertheless be replaced with different
implementations. The layout model developed in Section 3.4 provides an ex-
ample of how the general optimization method can be substituted for a more
efficient algorithm exploiting the specific characteristics of the final model.



Chapter 3

General Energy Layouts

Graphs are used as abstractions in numerous fields of application. Conse-
quently, the same structure can mean quite different things depending on the
context. To effectively visualize a graph, the specific type of information it
represents must govern the graphical design. Drawing traditions and restric-
tions like available media may further influence the specification of layout
models.

The layout framework introduced in the previous chapter separates the
design of a graphical presentation from its algorithmic realization. Though
inefficient, a universal algorithm can be employed to tackle the resulting
optimization problems. Together this enables us to try out different layout
models for graphs from a given application without having to implement
a new algorithm every time the model is changed. Rapid prototyping of
layout models can thus be carried out in cooperation with domain experts
evaluating the results. When a satisfactory layout model is found, one can
try to improve on computation times by tailoring heuristic methods to this
model, or by formulating an equivalent model in a way that is amenable to
efficient algorithms.

Three case studies shall demonstrate the practicality of this approach.
To get a better feel for the use of local criteria, though, we first take a
look at some well known layout methods from the graph drawing literature.
Then we provide layout models for graphs representing structures as diverse
as social networks, dynamic linkages of a World Wide Web site, and time
table entries of several European public transport systems by drawing from
the toolbox of constraints and local criteria. A number of example layouts
is given to indicate the appropriateness of the models thus devised. In one
particular case we also demonstrate that computation times can substantially
be reduced by subsequent replacement of the general energy minimization
routine.

25
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3.1 Force Directed Placement

The famous spring embedder (Eades, 1984) is the force behind a whole class of
layout algorithms typically subsumed under force directed placement .1 These
are layout algorithms for straight-line representation of general undirected
graphs. Recall that the layout elements of straight-line representations are
the vertices of the graph. A common feature of the underlying layout models
is the exploitation of a physical analogy. Vertices and edges of a graph are
regarded as physical objects exerting forces on each other, and a configuration
of low internal stress is sought.2 More precisely, a spring embedder for an
undirected graph G = (V,E) assumes repelling forces

c1

d(xu, xv)2

between points representing non-adjacent vertices u, v ∈ V . While c1 is a
constant, d(xu, xv) denotes the Euclidean distance between positions assigned
to layout elements u and v. If {u, v} ∈ E, a spring is pretended between the
points representing u and v. The spring exerts a force of magnitude

c2 · log
d(xu, xv)

l

where c2 and l are further constants. Note that the spring does not exert
any force if the distance between xu and xv is exactly l. The parameter
thus represents the ideal length of the spring. An equilibrium configuration
is obtained by iteratively computing all forces present and moving points
representing vertices along their resulting force vector.

It seems that relaxed configurations of such force systems satisfy a number
of straightforward criteria for ergonomic layout simultaneously, e.g. uniform
edge length, symmetry, and spatial clustering of dense subgraphs. Note that
the layout of Figure 2.5(b) was generated from such model. Since these meth-
ods are “easy to understand and relatively simple to code” while “the results
can be good” (Di Battista et al., 1999, p. 304), they are very popular. The
many conceived variants differ in the forces defined and in the algorithms
used to find a configuration in equilibrium. A distinction can be made be-
tween approaches actually defining forces, and those assigning a potential

1A number of authors have independently presented force directed methods (Tutte,
1963; Fisk et al., 1967; Quinn and Breuer, 1979; McDonald and Pedersen, 1991), but none
of these works had comparable impact.

2As noted in Fruchterman and Reingold (1991), the term “force” is interpreted quite
loosely. Functions modeling forces are usually defined to be efficiently computable rather
than to match their physical analogies.
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energy to each configuration. While the former define a layout model only
implicitly, the latter obviously fit directly into the framework of Chapter 2.
We therefore use the term energy based placement to seclude approaches with
an explicit objective function.

3.1.1 Spring Embedder Refinements

Fruchterman and Reingold (1991) replace the spring embedder’s repelling
and attracting forces between pairs of vertices by repelling forces

frep(xu, xv) =
l2

d(xu, xv)

between every pair of vertices u and v, and additional attracting forces

fattr(xu, xv) =
d(xu, xv)

2

l

only between adjacent vertices. Parameter l describes the optimum length
of a single edge, and is set to c ·

√
cA/n, where cA is the desired layout area,

and c is an experimentally chosen constant. These functions are cheaper to
evaluate and steeper, thus resulting in faster convergence. The algorithm
to find a stable configuration features an adaptive parameter controlling the
maximum displacement allowed. Frick et al. (1995) develop this idea fur-
ther by introducing an independent adaptive parameter for each vertex, and
some other heuristics to speed up the computation. They also introduce an
additional force dragging the vertices to the barycenter of the layout. The
approach is modified for three-dimensional straight-line representations in
Bruß and Frick (1996).

While most force directed placement approaches are suitable for undi-
rected graphs only, the variant of Sugiyama and Misue (1995) allows (even
mixed in) directed edges.3 In addition to the springs and repulsive forces of
the basic spring embedder, magnetic fields introduce new rotative forces

frot(xu, xv) = c1 · cB · d(xu, xv)
c2 · � B(xu, xv)

c3

acting on the springs (i.e. the edges). According to possible combinations
of edge direction, springs are either non-magnetic, uni-directional magnetic,
or bi-directional magnetic springs. Here, cB denotes the strength of the
magnetic field, � B(xu, xv) the angle between the field’s orientation and the
edge vector (if the spring is bi-directional, it is the minimum of both angles),
and c1, c2, and c3 are constants. We make use of this idea in Section 3.3 to
depict hierarchies.

3Tunkelang (1994, Section 4.1.3) has essentially the same idea, but does not elaborate.
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The design goals implicit in the above approaches can be expressed in
terms of local criteria by using potential functions with appropriate minima.
Since intuitive and controllable local criteria meeting most of these goals
have already been introduced in some well known energy based placement
methods, we refrain from presenting such potential functions. Instead we
review briefly the corresponding literature using the notation introduced in
Chapter 2.

3.1.2 Energy Based Placement

Kamada and Kawai (1989) formulate an explicit objective function for good
layout. It consists of interaction potentials for every pair of vertices mea-
suring the deviation of the Euclidean distance between two vertex positions
from a monotone function in the vertices’ graph theoretic distance,

U
(KK)
{u,v}(x) =

(d(xu, xv)− l · dG(u, v))2

dG(u, v)2

where l is again the desired length of a single edge and dG(u, v) denotes
the length of a shortest path between u and v in G.4 A local minimum
of U (KK)(x) =

∑
u6=v∈V U

(KK)
{u,v}(x) is computed by iteratively applying a two-

dimensional Newton-Raphson method to relocate a single vertex.
An immediate problem of the basic spring embedder is the lack of control

over distance between a vertex and an edge. Clearly, no edge should pass
by a non-incident vertex closer than necessary. While the energy function of
Kamada and Kawai (1989) indirectly accounts for this criterion, Davidson
and Harel (1996) introduce a corresponding potential

U
(DH)
{u,v,w}(x) =

c%

d (xv; xu, xw)2

where d(xv; xu, xw) = mint∈[0,1] d (xλ, xλ1 + t · (xλ2 − xλ1)) is the minimum
distance between xv and any point on the straight-line segment connecting
xu and xw, v 6∈ {u, w} ∈ E, and c% is a repulsion factor. This potential is

4This is similar to multidimensional scaling. If the input matrix is (dG(u, v))u,v∈V ,
multidimensional scaling is to minimize

∑
u,v∈V (d(xu, xv)− dG(u, v))2

∑
u,v∈V d(xu, xv)2

over x ∈ � 2·|V | (Kruskal and Wish, 1978). Roughly speaking, the energy of Kamada
and Kawai (1989) renders deviation from larger desired distances less important, thus
emphasizing short range relations.
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interaction potential interpretation

Attraction (xλ1 , xλ2 | cα ) = cα · d(xλ1 , xλ2)2 λ1 and λ2 should be as
close as possible

Repulsion (xλ1 , xλ2 | c% ) =
c%

d(xλ1 , xλ2)2
λ1 and λ2 should be as far
apart as possible

Repulsion (xλ; xλ1 , xλ2 | c% ) =
c%

d(xλ; xλ1 , xλ2)

λ should be as far from the
straight-line segment con-
necting λ1 and λ2 as pos-
sible

Distance (xλ1 , xλ2 | cδ ) =
c4
δ

d(xλ1 , xλ2)2
λ1 and λ2 should be at dis-
tance cδ from each other

Angle (xu, xv, xw | c% ) = c% · 	 (xv; xu, xw)
the angle formed by line
segments xvxu and xvxw
should be as large as pos-
sible

Crossing (xλ1 , xλ2 ; xλ3 , xλ4) =





1 if xλ1xλ2 ,
xλ3xλ4 cross

0 otherwise
avoid crossings

Figure 3.1: Fundamental local criteria in straight-line representations

used in combination with attraction and repulsion potentials similar to the
forces of Fruchterman and Reingold (1991),

UDH
{u,v}(x) =





c%
d(xu, xv)2

+ cα · d(xu, xv)
2 if {u, v} ∈ E

c%
d(xu, xv)2

otherwise

where the ratio of the repulsion constant c% and the attraction constant cα
determines the desired edge length l = 4

√
c%/cα. Finally, there are additional

single vertex criteria

U
(DH)
{v} (x) =

c%
d(xv; top)2

+
c%

d(xv; bottom)2
+

c%
d(xv; left)2

+
c%

d(xv; right)2

simulating repulsion from the top, bottom, left, and right side of the layout
area, and four-vertex potentials (for every pair of disjoint edges) counting
the number of edge crossings in the layout. Simulated annealing is used to
minimize this complex, discrete energy function. Tunkelang (1994) presents
several heuristics to improve on running time, but otherwise uses a subset of
the above criteria. For three-dimensional layouts Cruz and Twarog (1996)
replace the vertex-edge distance and crossing potential by an edge-edge re-
pulsion potential.
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Some important local criteria, many of which will be used in subsequent
sections, are summarized in Figure 3.1. Note that most of them already
appear in Davidson and Harel (1996). Vertical bars in arguments separate
parameters from actual variables. While parameters may sometimes be omit-
ted, replacing some variables by fixed values yields further potentials that can
be used to express additional properties. Observe that potentials U

(i)
C can

be scaled and weighted by functions f
(i)
C : 
 → 
 , so that their combination

yields an energy

U(x) =
∑

i

∑

C∈C
f

(i)
C

(
U

(i)
C (x)

)

which may render some criteria more important than others. In particular,
negative parameters can be used to reverse the objective of a potential.

Many different layout models can be built out of a small number of funda-
mental local criteria like those in Figure 3.1. The following simple examples
are meant to demonstrate how a graph can be twisted and turned by using
different potentials. Layout models are described in tables with one row for
each criterion, stating the layout elements involved and the potential assigned
to the corresponding clique of the interaction graph. The set of layout ele-
ments, the interaction graph, etc. are implicit. The most basic combination
of potentials resembles the original spring embedder.

interaction potential

u, v : u, v ∈ V Repulsion (xu, xv)
u, v : {u, v} ∈ E Attraction (xu, xv)

Introducing additional attraction potentials dragging the two cycles of degree
three vertices, Vblue, Vred ⊆ V , to specified points, yields the following model.
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interaction potential

u, v : u, v ∈ V Repulsion (xu, xv)
u, v : {u, v} ∈ E Attraction (xu, xv)
v : v ∈ Vblue Attraction (xv, upper left)
v : v ∈ Vred Attraction (xv, lower right)

In a last example, the graph is flattened by adding a potential that penalizes
crossings to the elementary combination of attraction and repulsion.

interaction potential

u, v : u, v ∈ V Repulsion (xu, xv)
u, v : {u, v} ∈ E Attraction (xu, xv)

u1, u2, v1, v2 : {u1, v1} 6= {u2, v2} ∈ E Crossing (u1, v1; u2, v2)

We make extensive use of this flexibility in three quite different applica-
tions of graph visualization presented in the next sections.
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3.2 Case Study I: Social Networks

In cooperation with members of the Faculty of Public Policy and Manage-
ment at the University of Konstanz, we seek layout models for graphs arising
from a social science methodology known as social network analysis. Since,
at this stage, it is not known what effective visualizations of social networks
look like, nor even how to assess the quality of a given visualization, we make
extensive use of the inherent prototyping facilities of energy based placement.

Social network analysis is concerned with relationships among social en-
tities, called actors. Relations may be affective, interactional, economic,
political, organizational, or of any other type. Sometimes, “network” is just
meant metaphorically, but in formal network analysis, networks are indeed
considered as graphs. Structural variables measuring properties of the graph
are used to support reasoning about the influence that structure is assumed
to have on decision making or other consequences. Properties of the under-
lying structure are assumed to be determinants of outcomes. Foundations of
the network perspective are given in Berkowitz (1982) and Burt (1982), and
network analysis is discussed in Scott (1991). For an in-depth treatment see
Wasserman and Faust (1994).

Our visualization efforts are guided by the principle that graphical design
should be grounded on the substance to be communicated (see Section 2.1.2).
Network visualization should be contingent on the general aim of social net-
work analysis and its specific use of the “network analytic tool box”5 for this
purpose. We therefore first describe typical substance examined in social
network analysis. Following some background on existing methods of social
network visualization, we focus on one particular structural variable, central-
ity, and present a design depicting this substance while showing the network
in its entirety.

3.2.1 Substance

The basic goal in the study of social networks is to describe the structure
of relationships among a set of actors. A societal study using the network
approach first delineates the set of relevant actors engaged, and then identi-
fies the various relations of particular significance among them. The guiding
idea behind this analytical perspective is that social configurations or de-
velopments can be explained by structured interaction within an actor set.
Structuring is understood as an emergent effect which is restricting as well
as enabling the actors to certain actions. Within the spectrum of network

5Kenis and Schneider (1991) in the context of policy networks, i.e. networks used to
explain policy outcomes.
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analytic methods, one can distinguish two types of structural perspectives,
which are pursued at three different levels of detail: the actor, group, and
network level.

On the one hand, a structural perspective may aim at detailed description
of whether and how the different actors in a network are connected to each
other via direct or indirect links. This viewpoint is called the connectedness
perspective. On the other hand, the focus may be on similarity or dissimilar-
ity of relational profiles of actors, which is then called the profile perspective.
Actors with identical or nearly identical profiles are said to have equivalent
network positions, and the distribution of roles and positions among actors is
investigated. Often, both types of structural analysis are used in combination
to analyze different aspects of an overall network.

At the actor level of analysis, structural variables measuring the relative
position of actors based on their direct and indirect links to all other actors
in the network are defined. Graph theoretic concepts like connectivity, path
distance, or degree, are used to derive actor attributes assessing how central
or how peripheral an actor is located, or what status an actor has in a link
structure. Actor profiles are often defined on the basis the subgraph induced
by their neighborhood.

At the group level, the analysis focuses on the question how a given
network is structurally partitioned into subnetworks or groups. Partitioning
can be performed from a connectedness perspective as well as from a profile
perspective. Groups based on connectedness typically correspond to dense
subgraphs. A number of related questions arise, asking for the number of
groups, diameters, separators, or cut sizes. Operational concepts for cohesive
groups include components, cliques, clans, and cores. Also of interest are
special structural properties such as the existence of bridges or cutvertices
(“brokers”). In contrast, groups based on profile similarity are identified
via equivalence classes of actors, i.e. actors with identical or highly similar
relations. Such a class is then interpreted as a social position representing
a specific role with respect to the network. Social network analysis provides
a spectrum of aggregation and division methods, such as block modeling or
clustering procedures, to determine equivalence classes.

At the network level, structural analysis is concerned with different over-
all characteristics of the complete network structure such as how dense or
how centralized a network is. Aggregate measures on the total network are
particularly useful for comparison with other networks.

Since specific structural variables are used to analyze a given social net-
work, they should be incorporated into a graphical design to produce mean-
ingful visualizations. It is convenient to classify typically investigated sub-
stance into categories that help to better understand the possibilities and



34 CHAPTER 3. GENERAL ENERGY LAYOUTS

limitations of a graphical design that is to convey it (see Table 3.1). These
distinctions may serve as a guideline how visualizations can enhance the un-
derstanding of complex multidimensional settings by mapping different kinds
of information to graphical variables on compatible levels of measurement.

The general distinction between semantic and syntactical substance (see
Section 2.1.2) immediately applies to social networks. Essentially, semantic
attributes are those closely related to the specific network under scrutiny
(therefore, only examples of such attributes are given), while syntactic at-
tributes are derived solely from the adjacency structure. The first three
subcategories in both columns of Table 3.1 correspond to the three levels of
aggregation: actor, group, and network. The fourth subcategory is intro-
duced to account for properties that apply only in special cases.

In social network analysis, one is often interested in all three levels of
aggregation simultaneously in order to explore or communicate information
embedded in its context. Most desirable visualization techniques would there-
fore combine the associated perspectives in an information dense design that
allows to switch between detail levels in a single image. In Tufte (1990), this
is called micro/macro reading.

Syntactical Attributes Semantic Attributes

Actor Attributes Actor Attributes, e.g.
centrality size of an organization
prestige / prominence age of a person

Structural Partitions Attribute Partitions, e.g.
cohesive subgroups organizational subunits
structurally equivalent actors legal form of an organization
role equivalent actors attitudes towards policy issues

Network Structure Network Attributes, e.g.
size period of data gathering
density reliability
centralization
cohesiveness

Structural Positions Selected Attributes, e.g.
bridge distinct institutional role
broker

Table 3.1: Typical substance analyzed in social network analysis
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3.2.2 Social Network Visualization

Given the fact that graphical presentations were among the very first means
to represent and analyze social structures (Moreno, 1953), it is astonishing
how little attention the subject was paid subsequently. We give a brief sum-
mary of the history of network visualization and of methods currently in
use. More detail on the early stages of network visualization is provided in
Klovdahl (1981), one of the rare publications on social network visualization
so far. Although interesting and very to the point, it seems to have largely
been ignored.6

Already in the 1930s, Moreno used graphical presentations of relational
sociological data. His sociograms (point-and-line representations) comprise
one of the earliest formalizations of social structure, influencing – directly
or indirectly – a number of subdisciplines of the social sciences like social
psychology, social anthropology, sociology of organization, etc.According to
Scott (1991, p. 18), one of the major investigations popularizing this approach
is the one known as the “Hawthorne Study” (Roethlisberger and Dickson,
1939). In this study, social relations among workers in a bank wiring room
are described by sociograms. Actors are represented by circles placed on
horizontal lines indicating the actor’s occupation, and the presence of a re-
lationship of certain type is shown by an arrow. Figure 3.2(a) is an example
of such a diagram. It is an interesting observation that these diagrams re-
semble circuit schematics and wiring plans. One has an immediate idea who
was asked to draw them.

Although these early forms of graphical presentation were applied in
structural analyses at all levels of society, and although they were consid-
ered a fruitful method of exploration, it seems that the tedious process of
manually designing network visualizations has prohibited major innovations
until the use of computers became customary. Nevertheless, the few exam-
ples of visual representations also include other specialized variants of the
general sociogram. One such example, analyzed in Klovdahl (1981) and
shown in Figure 3.2(b), is a diagram from Lundberg and Steele (1938). In
this straight-line representation a focal actor is placed in the center of the
layout area. To reduce visual clutter, the other actors are placed manually
such that the number of crossings remains small.

Instead of an a-priori important actor, structural variables govern the de-
sign of the target diagram from Northway (1940, see Figure 3.3). Actors are
clustered according to quartiles of acceptability scores they received in ques-
tionnaires. The vertices of each cluster are mapped to one of four concentric

6According to the Social Science Citation Index, it was cited only four times from 1981
to 1996.
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(a) Roethlisberger and Dickson (1939, Figure 44)

(b) Lundberg and Steele (1938, Chart I)

Figure 3.2: Historical examples of sociograms
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Figure 3.3: Target diagram (Northway, 1940, p. 149)

rings, where the lowest quartile is farthest from the center.7 This approach
is extended in Section 3.2.3. Finally, a network representation used quite
often is the circle diagram, in which a sociogram is constructed around the
circumference of a single circle with edges drawn as chords. This kind of
layout is attributed to “make the pattern of lines more visible” (Scott, 1991,
p. 149), but Blythe et al. (1996) provide empirical evidence that it is rather
confusing.

Increasing availability of software tools, and the use of statistical meth-
ods like multidimensional scaling (MDS) or cluster analysis initiated new
concepts and techniques of visualization. Therefore, sociograms today are
accompanied by three other forms of graphical presentation that do in turn
focus on particular aspects of the input network: MDS scatterplots represent-
ing path distances or structural similarity in terms of Euclidean distances,
dendrograms depicting clustering hierarchies, and Venn diagrams showing
cluster overlap. Figure 3.4 gives one example for each design.

Unfortunately, current visualizations of networks in sociograms are lim-
ited in the sense that they try to make use of what is available, rather than to
state what is desired and ask for tools implementing these requirements. Re-
cent work on visualization (Freeman, 1996, 1997) orients itself towards the
applicability and usefulness of existing computer software. Consequently,

7Northway (1940, p. 149) reports that the actual placement within the rings was de-
termined by arranging poker chips on a table.
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(a) Sociogram (Mayntz, 1994, p. 38) (b) Venn diagram (Kriesi, 1982,
p. 147)

(c) MDS scatterplot (Laumann and
Knoke, 1987, p. 242)

(d) Dendrogram (Scarini, 1996,
p. 98)

Figure 3.4: Graphical presentations commonly used for network data
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current methods are almost oblivious of what is described in Section 2.1.2 to
be the three building blocks of information visualization (substance, design,
algorithm).

Currently used network visualization tools fall into four categories: Gen-
eral purpose graphical editors, two kinds of drawing programs developed for
other than social networks, and tools and strategies explicitly meant to be
used for social networks.

General purpose graphical editors. They are the least comfortable, yet
most flexible tools, and are available for virtually every computer platform.
The latter is an important criterion for production techniques to become suf-
ficiently widespread. Such editors do provide a rich set of editing functions,
but almost no features tailored to networks. In particular, vertices repre-
senting actors and edges representing links can be moved independently on
the screen, because such programs obviously do not know about structural
issues. The burden of specifying and implementing a graphical design is put
on the user. Moreover, manual design of meaningful graphical presentations
even for networks of moderate size is a tedious, if not intractable, task. The
latter explains why tabular presentation is often preferred.

Network drawing software from other disciplines. There are two
such categories. One consists of those programs that draw specific networks
other than social networks, like, for instance, molecule structures.8 These
provide means to layout a network in domain dependent ways. For example,
atoms and bonds of a molecule are positioned according to underlying energy
laws. Obviously, such programs do not account for the substance of a social
network. And because of that, it is only by chance that they specify an
effective design. Their usefulness seems to be limited to the fact that they,
in general, produce drawings that are pleasing from an ergonomic point of
view.

The other such category consists of general purpose graph drawing soft-
ware. It mainly contains domain independent graph layout tools offering a va-
riety of algorithms for different layout models. Examples are, of course, fairly
general graph drawing systems like Graphlet (Himsolt, 1996) or daVinci
(Fröhlich and Werner, 1995). Since the design principles implemented by
these algorithms are usually ergonomic requirements like small area, small
number of edge crossings, or small number of bends on the edges that apply

8Moviemol (http://chem-www.mps.ohio-state.edu/~lars/moviemol.html) is a
popular example.
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to almost any kind of graph visualization, they also do not account for the
specific substance of social networks.

Software and strategies for social networks. This category comprises
plots produced by routines in analytical software packages for multidimen-
sional scaling (see, e.g., Kruskal and Wish, 1978)) or eigen analysis (see,
e.g., Mohar, 1991; Richards and Seary, 1997), as well as designated drawing
programs for social networks, and the only living variation of the general
sociogram that could be tracked down, circle diagrams.

Multidimensional scaling and eigen analysis are arguably the network vi-
sualization strategies for which substance, design, and algorithm are most
clearly identified. Both produce scatterplots: MDS plots reflect proximity
in higher dimensional data (e.g. path distances) in fewer dimensions, while
eigen analysis plots are produced according to eigenvectors of matrices repre-
senting the network, e.g. the adjacency matrix or the Laplacian matrix (see
Section 4.1.1). Both methods display particular aspects of a network’s overall
substance, but typically lead to unpleasing drawings when edges are shown
in the scatterplot. The stress value (Kruskal and Wish, 1978) of an MDS
provides a measure of how well the plot fits the design (mapping proximity
to Euclidean distances).

Drawing programs like KrackPlot (Krackhardt et al., 1994), Pajek
(Batagelj and Mrvar, 1998), or MultiNet9 are the most advanced tools
available today. Besides actor positioning according to MDS and eigende-
composition, respectively, the first two also include refinements of the spring
embedder. While the layout of KrackPlot is based on the model of David-
son and Harel (1996), Pajek includes the models of Fruchterman and Rein-
gold (1991) Kamada and Kawai (1989). In both cases the design is a function
of the algorithm rather than the substance. However, it is interesting to note
that applying these algorithms nevertheless appears to be very reasonable if
the substance of interest is proximity in terms of path distances. The im-
plied design is closely related to the design of MDS with some additional
ergonomic criteria, e.g. nodes being distributed more evenly in the layout
space. A similar layout algorithm is used by Krempel (1997).

The idea of circle diagrams clearly defies any definition of substance. It
is a design purely based on a doubtable ergonomic criterion, simplification
through prescribed shape (cf. Blythe et al. 1996; McGrath et al. 1997). An
extension presented in Krempel (1993) requires actors to be placed such that
the total length of connecting lines is small. Even though dense subgraphs
then tend to cluster in small arcs, there is no precise definition of the sub-

9http://www.sfu.ca/~richards/multinet.htm
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stance thus revealed. Not to speak of evidence that this design is effective.

In summary, existing methods for social network visualization do not
clearly identify substance, design, and algorithm at the same time. The
only exceptions to this observation are diagrams resulting from designated
analytical tools like multidimensional scaling or eigen analysis. However,
they disregard ergonomic aspects and have a very limited definition of a
network’s substance. Often they only show the aggregated values, but not
the network itself. Because of the relation between the objective function
of Kamada and Kawai (1989) and MDS pointed out earlier, energy based
placement may be capable of integrating ergonomic and other criteria in an
effective design. It might turn out that criteria often present in energy based
placement approaches (in particular uniform node distribution and uniform
edge lengths) work well enough in displaying many relevant aspects of a net-
work, like symmetry, cohesive subgroups,10 brokers, and so on. For now, this
remains an open question that can only be answered by careful analysis of
the substance to be displayed and the substance perceived. The following
section provides a first step in this direction.

3.2.3 Depicting Centrality

Our general assumption is that, in order to routinely produce effective visu-
alizations of social networks, standards for effective design on the basis of a
network’s substance are needed. Layout is the most challenging part of such
guidelines, since many reasonable layout criteria are only approximately sat-
isfiable,11 or conflicting. A possible approach to resolve the latter difficulty at
least partially is to “triangulate” different analytical perspectives.12 Each of
them should provide greater accuracy in the description of selected aspects,
while their combination diminishes the risk of being taken by methodolog-
ical artifacts. We here take on one such perspective and use energy based
placement to prototype layout models accordingly.

10See McGrath et al. (1998) on the perception of groups.
11For example, one of Tufte’s preconditions for graphical excellence is to tell the truth

about the data (Tufte, 1983, p. 51). A layout requirement might therefore be that all
edges representing the same type of relation be of equal length. However, such layouts do
not exist for all graphs, and it is NP-hard to decide, whether it exists or not (Johnson,
1982).

12Triangulation is generally defined as the combination of methodologies in the study of
the same phenomenon. It stems from a military metaphor pointing to the use of multiple
reference points to locate an object’s exact position (Jick, 1979, p. 602). For an implicit
use of triangulation in network analysis see Doreian (1988).
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Part of an overall substance, the notion of centrality is one of the most
important aspects in social network analysis. It is investigated on all three
levels of detail, and therefore distinguished into actor centrality, group cen-
trality, and network centralization. It appears to be the ideal starting point to
experiment with layout models highlighting structural variables, since being
central has an intuitive geometric connotation.

Several non-equivalent operationalizations of the centrality concept on
the actor level are considered in network analysis. They are mostly based on
vertex degrees or derived from pairwise distances. Freeman (1979) outlines a
framework to obtain a normalized and a network level measure from a given
actor level centrality index. If C(v) is a non-negative actor level centrality
index, then the normalized centrality measure

C ′(v) =
C(v)

max
Gn

max
w∈Vn

C(w)

where maximization is over all graphs Gn = (Vn, En) on n = |V | vertices,
takes values between zero and one. We will see below that, for some cen-
trality measures, it is advantageous to use this normalized version in layout
design. The extreme case of a centralized network is assumed to be such
that there is a highly central actor, while all others are peripheral. A net-
work centralization index can therefore be defined by

C(G) =

∑
v∈V (maxu∈V C ′(u)− C ′(v))

max
Gn

∑
v∈Vn (maxu∈Vn C

′(u)− C ′(v))

where maximization is again over all connected undirected graphs Gn =
(Vn, En) with the same number n of vertices as G. In the following, we
apply this framework to centrality indices based on four different measures:
degree, closeness (Sabidussi, 1966), eccentricity (Hage and Harary, 1995),
and betweenness (Freeman, 1977). Note that eccentricity is not treated in
Freeman (1979). Let G = (V,E) be an undirected and connected graph with
n vertices and m edges throughout.

Degree. A straightforward notion of centrality reflecting the activity of an
actor is the number of links he or she maintains. Degree centrality is hence
defined to be the degree of the corresponding vertex,

CD(v) = dG(v)

Using the maximum degree possible in any graph on n vertices, normalization
yields

C ′D(v) =
CD(v)

n− 1



3.2. CASE STUDY I: SOCIAL NETWORKS 43

Since the largest sum of differences between a vertex of maximum degree
and all others in a connected graph occurs if the latter have degree one, the
degree centralization of a network equals

CD(G) =

∑
v∈V

(
∆(G)
n−1
− C ′D(v)

)

max
Gn

∑
v∈Vn

(
∆(Gn)
n−1

− C ′D(v)
)

=

∑
v∈V (∆(G)− dG(v))

max
Gn

∑
v∈Vn (∆(G)− dG(v))

=

∑
v∈V (∆(G)− dG(v))

(n− 1) · (n− 1− 1)

=

∑
v∈V (∆(G)− dG(v))

n2 − 3n+ 2

where ∆(G) is the maximum degree of any vertex in G.

Closeness. The degree of a vertex is a very local concept of centrality,
counting how many others are immediately linked to an actor. The under-
lying notion of accessibility can be expanded to the whole graph using the
sum of distances, or closeness,

cG(v) =
∑

w∈V
dG(v, w)

of a vertex to all others. The closer to all others, the more central an actor
is. Closeness centrality is hence defined as inverse sum of distances,

CC(v) =
1

cG(v)

The maximum possible value occurs for vertices directly connected to all
others. It follows that the relative closeness centrality,

C ′C(v) =
CC(v)

1/(n− 1)
=

n− 1∑
w∈V

dG(v, w)

is the inverse average distance of a vertex from all others. The maximum
sum of differences in relative centrality scores is attained in a star, so that
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closeness centralization evaluates to

CC(G) =

∑
v∈V (maxu∈V C ′C(u)− C ′C(v))

(n− 1) ·
(
n−1
n−1
− n−1

1+(n−2)·2

)

=

∑
v∈V (maxu∈V C ′C(u)− C ′C(v))

(n2 − 3n+ 2)/(2n− 3)

=

∑
v∈V (maxu∈V CC(u)− CC(v))

(n− 2)/(2n− 3)

Eccentricity. In general, closeness centrality counts connections used to
reach other actors more than once. If the interest is solely in the longest
distance, centrality can be based on the eccentricity

eG(v) = max
w∈V

dG(v, w)

of a vertex. An actor is considered central, if the eccentricity of its corre-
sponding vertex is small. Note that the vertices with minimum eccentricity
form the graph theoretic center of the graph. We thus define graph centrality
by

CG(v) =
1

eG(v)

and its maximum value is one. It follows that C ′G(v) = CG(v), and

CG(G) =

∑
v∈V (maxu∈V C ′G(u)− C ′G(v))

(n− 1) · (1− 1
2
)

=

∑
v∈V (maxu∈V C

′
G(u)− C ′G(v))

(n− 1)/2

Betweenness. For any three distinct vertices u, v, w let P (u, w) be the set
of shortest paths between u and w, and Pv(u, w) be the set of shortest paths
between u and w passing through v. Then, the sum of ratios

bG(v) =
∑

u6=v 6=w

|P (u, w)|
|Pv(u, w)|

of shortest paths that v sits on is called betweenness of v. Betweenness reflects
the extent to which an actor is a mediator in the network. As a measure of
betweenness centrality, we simply use CB(v) = bG(v). Its maximum value is
attained by the central vertex of a star, so that

C ′B(v) =
CB(v)

(n− 1)(n− 2)/2
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Stars also yield the maximum sum of differences in relative betweenness
scores, since the central vertex has relative betweenness centrality one, and
all other vertices score zero. It follows that

CB(G) =

∑
v∈V (maxu∈V C

′
B(u)− C ′B(v))

n− 1

=

∑
v∈V (maxu∈V CB(u)− CB(v))

n3 − 4n2 + 3

The above four families of measures in general differ both in actor cen-
trality and network centralization scores. However, they all assign mini-
mum centralization to complete graphs, and maximum centralization to stars.
Freeman (1979) discusses the advantages and disadvantages of using degree,
closeness, or betweenness centrality in different research settings.

We argued that graphical design should be based on the substance to be
communicated. To depict centrality in straight-line representations of social
networks, we intend to place vertices at some distance from the center of the
diagram that reflects their centrality score, thus drawing on the geometric
intuition behind centrality.

Let r(v), v ∈ V , be specified radii. Then, we constrain the set of fea-
sible positions of vertex v to those at distance r(v) from the origin, which
is presumed to be the center of the diagram. Adding some potentials for
ergonomics, we obtain a generic centrality layout model

interaction potential

u, v : {u, v} ∈ E Distance (xu, xv | cδ(u, v))
u, v : {u, v} 6∈ E Repulsion (xu, xv)

u, v, w : v 6∈ {u, w} ∈ E Repulsion (xv; xu, xw)
u1, u2, v1, v2 : {u1, v1} 6= {u2, v2} ∈ E Crossing (u1, v1; u2, v2)

dependency constraint

v : v ∈ V d(xv, 〈0, 0〉) = r(v)

which allows to specify a mapping of vertices to concentric circles by choosing
radii r(v). Note that the distance parameter cδ(u, v) is made dependent on
the pair of adjacent vertices. In general, edge lengths are desired to roughly
equal the difference in radius, |r(u)−r(v)|. If this difference is small, however,
cδ(u, v) is increased to prevent very short edges.

Figure 3.5(a) shows a network of local organizations in a German city
that are involved in drug policy making (Kenis, 1999). The network defining
relation is private communication between these organizations. A structural
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(a) closeness

(b) normalized closeness centrality

Figure 3.5: Closeness levels cause a resolution problem which is resolved by
using normalized closeness centrality
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variable of interest is closeness centrality, which is depicted by choosing radii
according to the closeness of each vertex. For ease of notation, let |min f |
and |max f | denote the number of minima and maxima of a function f ,
respectively. The most central actor should be placed in the center of the
diagram, but since there may be more than one such actor, radii are defined
by

r(v) = cG(v)−min
u∈V

cG(u) + |min
u∈V

cG(u)| − 1

The fact that closeness yields large differences in value especially for less cen-
tral actors causes some obvious drawbacks. While edges to peripheral actors
become quite long, the set of central actors clusters in a small area around
the center. We can reverse this effect using closeness centrality instead of
closeness. Normalized closeness centrality is bounded from above by one, so
that taking 1−C ′C(v) ensures that the relative ordering of distances matches
our intuition. To avoid overlaps caused by more than one vertex having ra-
dius zero, and to scale the diagram to fit into a standardized box, we actually
use

r(v) = 1− C ′C(v)−minu∈V C ′C(u)

maxu∈V C ′C(u)−minu∈V C ′C(u) + c(|maxu∈V C ′C(u)|)

where c(|maxu∈V C ′C(u)|) is an offset depending on the number of maximally
central actors. See Figure 3.5(b) and note the resulting non-linear scaling of
closeness levels.

The idea generalizes to other centrality measures using straightforward
scalings. Figure 3.6 shows centrality layouts based on the four measures de-
fined above, and a layout obtained from an implementation of a typical spring
embedder variant (Fruchterman and Reingold, 1991) implemented in Leda
(Mehlhorn and Näher, 1999). All subfigures show the same graph, which
is the communication network of local drug policy organizations in another
German town. Levels supporting comparison of centrality scores within a
diagram are drawn for each possible integer value of degree, eccentricity,
and closeness, respectively. In centrality layouts based on betweenness, only
occurring levels are shown.

Social network data is often gathered from questionnaires. A frequently
encountered problem is that links claimed by one actor are not reciprocated
by the other. The design used to produce Figure 3.7 includes directed edges
to additionally show who claimed to communicate with whom without being
confirmed. Closeness centrality scores are computed based on the recip-
rocated links, which form the subnetwork already presented in Figure 3.6.
Actors without any reciprocated link are placed outside of all closeness lev-
els shown. More substance is coded in graphical variables color (attitude
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(a) no centrality constraints

(b) degree centrality (c) graph centrality

(d) closeness centrality (e) betweenness centrality

Figure 3.6: Layouts based on various centrality measures
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Figure 3.7: Providing additional insight by showing unreciprocated links.
Centrality levels are based on reciprocated links only, but all edges contribute
to the layout energy function. Size indicates degree centrality, while color
and shape code semantic attributes of vertices

towards drug users), shape (governmental or private organization), and size
(degree centrality). Note that two (governmental) actors are peripheral, be-
cause none of their claimed links are reciprocated, while two (privately run)
organizations are fairly peripheral, because they confirm only few links. It
may be interesting to note that the underlying undirected graph was already
shown in Figure 2.5.

Similarly, the network of actors involved in a privatization process in
Eastern Germany (Raab, 1999) shown in Figure 3.8 has a number of unre-
ciprocated links. The relation represents strategic cooperation. It is difficult
to judge actor centrality from a spring embedding, which is commonly used
in social network visualization today. For example, it is unclear whether the
vertices represented by smaller boxes close to the center of the diagram are
central in the network. The question is immediately resolved by looking at
the centrality layout. Because of case specific considerations, radii for the
centrality layout model are determined from closeness centrality scores in the
underlying undirected network. However, the ratio of height to width cor-
responds to the ratio of in- to outdegree, providing graphical evidence that
the most central actors are central because they say so themselves.
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Figure 3.8: Spring embeddings do not properly communicate centrality
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3.3 Case Study II: Dynamic Web Structures

Graph A of the 1998 Graph Drawing Contest (Eades et al., 1998) is a welcome
opportunity to study dynamic layout models for straight-line representations.
Since 1993, a contest is organized along with the annual Symposium on Graph
Drawing (Di Battista et al., 1993a; Tamassia and Tollis, 1995; Brandenburg,
1996; North, 1996b; Di Battista, 1997; Whitesides, 1998). It usually features
graphs from different applications posing distinct problems with respect to
graphical presentation. Reports on earlier contest are given in Eades and
Marks (1995, 1996) and Eades et al. (1996, 1997). In the present case, a
dynamic graph of links between World Wide Web pages is given as a list of
link additions and deletions. Figure 3.9 shows the textual data presentation
provided for the contest. The substance of the graph is implied by the fact
that contestants should

“ . . . depict the content and structure of the graph as it evolves.”

As in the case of social networks, we here do not consider the content of
the graph (semantic substance) for layout, but rather focus on its evolving
structure (syntactic substance).

Because the third dimension provides an additional degree of freedom, we
choose a graphical design that animates a straight-line representation of the
graph in space. In particular, the near-hierarchical structure typical for the
pages of a single web site is mapped to the above/below relation. For graceful
animation, layouts before and after each modification must depend on each
other. The contest graph is hence a neat opportunity to study the integration
of stability terms in layout objective functions advocated in Section 2.2.2.

A drawback of using the third dimension is that we have to carefully
select a point from which to view the graph, because otherwise parts of the
structure may not be recognizable. We outline a simple, yet satisfactory
heuristic in Section 3.3.2. Some remarks on how the animation is actually
carried out and a number of sample frames conclude this section.

3.3.1 Dynamic Hierarchical Layout

The layout model is described in three steps. First, static structure is mapped
into space, then stability is introduced to limit changes between consecutive
layouts, and finally layouts are sequenced with respect to graph modifica-
tions.

Static layout model. The static layout model should map structural in-
formation contained in the set of links to spatial relations in three dimensions.
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add www.att.com/catalog/consumer -> www.att.com
add www.att.com/att -> www.att.com/catalog/consumer
add www.att.com -> www.att.com/catalog/consumer
add www.att.com/catalog/consumer -> www.att.com/cmd/custcare
add www.att.com/catalog/consumer -> www.att.com/write

add www.att.com -> www.att.com/worldnet
add www.att.com/catalog/consumer -> www.att.com/terms.html
add www.att.com/att -> www.att.com/learningnetwork
add www.att.com/catalog/consumer -> www.att.com/cgi-bin/ppps.cgi
add www.att.com -> www.att.com/catalog/small_business
add www.att.com/whatsnew -> www.att.com/catalog/consumer
add www.att.com/catalog/small_business -> www.att.com/cgi-bin/bmd_cart.cgi
add www.att.com/catalog/consumer -> www.att.com/cmd/jump
add www.att.com/att -> www.att.com/catalog

add www.att.com/textindex.html -> www.att.com/catalog/small_business
add www.att.com/catalog/small_business -> www.att.com/bmd/tollfree
add www.att.com/whatsnew -> www.att.com/worldnet/wmis
add www.att.com/catalog/consumer -> search.att.com
add www.att.com/catalog/small_business -> www.att.com/bmd/jump
add www.att.com/features -> www.att.com/rock
add www.att.com/catalog/small_business -> www.att.com
add www.att.com/home -> www.att.com/catalog/consumer

delete www.att.com -> www.att.com/catalog/consumer
add www.att.com/catalog/small_business -> www.att.com/services
delete www.att.com/att -> www.att.com/learningnetwork
delete www.att.com/catalog/consumer -> www.att.com/cmd/custcare
add www.att.com/catalog/small_business -> www.att.com/write
add www.att.com/net -> www.att.com/worldnet/wis/sky/signup.html
add www.att.com/catalog/small_business -> www.att.com/bmd/products
add www.att.com/catalog/small_business -> search.att.com
add www.att.com/net -> www.att.com/worldnet/wmis

add www.att.com/catalog/small_business -> www.att.com/terms.html
delete www.att.com/catalog/small_business -> www.att.com/bmd/tollfree
add www.att.com/att -> www.att.com/catalog/small_business
add www.att.com/news -> www.att.com/catalog/consumer
add www.att.com/whatsnew -> www.att.com/catalog/small_business
add www.att.com/net -> www.att.com/worldnet/intranet
delete www.att.com/whatsnew -> www.att.com/catalog/consumer
add www.att.com/catalog/small_business -> www.att.com/bmd/custcare
add www.att.com/catalog/consumer -> www.att.com/cgi-bin/cart.cgi

delete www.att.com/home -> www.att.com/catalog/consumer
add www.att.com/catalog/small_business -> www.att.com/cmd
add www.att.com/catalog/consumer -> www.att.com/services
add www.att.com/worldnet -> www.att.com/worldnet/intranet
add www.att.com/services -> www.att.com/catalog
delete www.att.com/catalog/consumer -> www.att.com
add www.att.com/services -> www.att.com/catalog/consumer
delete www.att.com/catalog/consumer -> www.att.com/services

add www.att.com/services -> www.att.com/catalog/small_business
add www.att.com/whatsnew -> www.att.com/news
delete www.att.com/whatsnew -> www.att.com/worldnet/wmis
add www.att.com/catalog/consumer -> www.att.com/cmd/products
delete www.att.com/net -> www.att.com/worldnet/wis/sky/signup.html
delete www.att.com/catalog/small_business -> www.att.com/services
add www.att.com/speeches -> www.att.com/speeches/index96.html
add www.att.com/worldnet -> www.att.com/worldnet/wmis
delete www.att.com/att -> www.att.com/catalog

add www.att.com/textindex.html -> www.att.com/catalog/consumer
delete www.att.com/services -> www.att.com/catalog
add www.att.com/news -> www.att.com/catalog/small_business
add www.att.com/international -> www.att.co.uk
delete www.att.com/catalog/small_business -> search.att.com
add www.att.com/business -> www.att.com/catalog/small_business
delete www.att.com/textindex.html -> www.att.com/catalog/consumer
add www.att.com/write -> www.catalog.att.com/cmd/jump

Figure 3.9: Data given for Graph A of the 1998 Graph Drawing Contest
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Suppose we are given only one directed graph G = (V,E). The layout ele-
ments in a three-dimensional straight-line representation are only the vertices
of the graph, L = V , and we assume that every grid point in a reasonably
large box centered at the origin is a feasible position.

For readability we stick to the proven local criteria described in Sec-
tion 3.1. Namely, we use repulsion potentials between every pair of vertices
and every pair of an edge and a non-incident vertex. Attraction potentials
are used between adjacent vertices. Note that there is no need for additional
potentials to avoid crossings.

The contest graph is disconnected at several points in time, so that the
repulsion potentials would cause components to drift arbitrarily far apart.
Additional attraction potentials therefore tie one vertex of each connected
component of the graph to the origin of the layout space. This vertex is
called the representative of its component.

Since the contest graph consists of web pages and changing links between
them, it is a general directed graph, yet with a tendency to contain hierar-
chical acyclic substructures. This is precisely the syntactic substance of the
graph. To encode the direction of edges graphically, we favor them point-
ing downward. In other words, the z-coordinate of the start vertex of any
directed edge should be larger than of its end vertex. Sugiyama and Misue
(1995) introduce rotative forces to align edges with an imaginary magnetic
field (see Section 3.1). We adapt this idea using potentials

Rotation
(
xu, xv

∣∣ c2
δ

)
= c2

δ ·




arccos
x

(3)
u − x(3)

v

d(xu, xv)
π

2




2

that measure the angle between a directed edge (u, v) ∈ E and the z-axis

(cf. Figure 3.10). Here, x
(3)
v denotes the z-coordinate of a position xv =

〈x(1)
v , x

(2)
v , x

(3)
v 〉 ∈ Xv, v ∈ V . Standardization with π/2 and multiplication

with the root of a distance constant c4
δ ensure that edge length and downward

direction have comparable influence on the objective function. The static
layout model for 3D straight-line representation of G = (V,E) is summarized
as follows

interaction potential

u, v : u 6= v Repulsion (xu, xv | c4
δ )

u, v : {(u, v), (v, u)} ∩ E 6= ∅ Attraction (xu, xv)
u, v : (u, v) ∈ E Rotation (xu, xv | c2

δ )
v : v representative of a component Attraction (xv, 〈0, 0, 0〉)

u, v, w : u 6∈ {v, w}, {(v, w), (w, v)}∩ E 6= ∅ Repulsion (xu; xv, xw | c4
δ )
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Figure 3.10: The angle between the directed edge (u, v) ∈ E and the z-axis

equals arccos x
(3)
u −x(3)

v

d(xu,xv)
.

Note that cδ controls the desired edge length, while a pair of arcs (u, v) and
(v, u) yields two conflicting potentials causing u and v to have roughly the
same z-coordinate.

Incorporating stability. In order to introduce dependencies between con-
secutive layouts, assume now that we are given a directed graph G = (V,E)
with a partial layout y = (yv)v∈Λ⊆V . The partial layout reflects the fact
that vertices of the graph not introduced during the most recent modifi-
cation are already positioned in space. Within the Bayesian framework of
Section 2.2.2, the partial layout is considered an observation for which a
deviation measure i.e. a criterion of stability, ought to be defined. Since a
layout of a straight-line representation is completely determined by vertex
positions, a very natural notion of stability is the absence of excessive vertex
movements. More formally, let the likelihood of y resulting in x consist of
vertexwise independent three-dimensional Gaussian distributions with mean
at the conditioning position xv, v ∈ Λ,

P (Y = y |X = x) =
∏

v∈Λ

P (Yv = yv |X = x)

=
∏

v∈Λ

P (Yv = yv |Xv = xv )

=
∏

v∈Λ

1

σ
√

2π
e
‖yv−xv‖2

2σ2
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=
1

σ
√

2π
e

�
v∈Λ d(yv ,xv)2/2σ2

Parameter σ controls the variance of the distribution and therefore the extent
to which a vertex is allowed to move. Note that the Gaussian distribution is
symmetric in xv and yv, and that it immediately translates into an attraction
potential. We thus add the local stability criterion

interaction potential

v : v ∈ Λ Attraction (xv, yv | cσ )

with control parameter cσ to the static layout model from above. This no-
tion of stability is called anchoring , because every vertex is attracted by its
position in the previous layout. Graphically speaking, stability between lay-
outs is modeled by springs of ideal length zero keeping vertices near a target
position derived from the previous layout. This is similar to the approach of
Lyons et al. (1998) for static graphs with geographic information.

Dynamic layout model. Instead of a single graph with partial preced-
ing layout, the contest data in Figure 3.9 implies a sequence of graphs
G(0), . . . , G(65), where G(0) is the empty graph. To produce a smooth anima-
tion, we now define a dynamic layout model according to which a sequence
of layouts is computed. The sequence of positions a vertex takes in these
layouts is used as a list of break points for splines defining the trajectory of
the vertex during the animation.

For every G(t), 0 < t ≤ 65, three layouts x(t, 0), x(t, 1), x(t, 2) ∈ X (t) are
computed according to different layout models. The sequence of layouts has
the form

x(0)
↓ G(1)
x(1, 0) x(1, 1) x(1, 2)

↓ G(2)
x(2, 0) x(2, 1) x(2, 2)

↓ G(3)
x(3, 0) x(3, 1) x(3, 2)

...

where x(0) is empty, x(t, 0), 0 < t ≤ 65, is computed from the static model,
but with all vertices present in both G(t− 1) and G(t) fixed at their position
in x(t−1), and x(t, 1) and x(t, 2) are computed from the static model with the
additional stability potential and all vertices movable. That is, each vertex is
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Figure 3.11: Two projections of a three-dimensional layout. All three types
of occlusion appear on the right hand side, causing gross misinterpretation
of identities and incidences

twice allowed to move into a better position not to distant from its previous
one. This way a modification first has no effect on the positions of remaining
vertices, but introduces potential new vertices at reasonable positions. A
modification of the graph is only then allowed to change the layout on a
larger scale. By splitting each update into these three layout steps, we ensure
that configurations change gradually. This way 195 layouts are computed to
determine the course of the animation. Cubic splines smoothly interpolate
vertex positions between these snapshots.

3.3.2 Viewpoints

There are no truly three dimensional media available to display the ani-
mation. We therefore seek two-dimensional projections showing as much
of the three-dimensional image as possible. Each projection depends on a
viewpoint, i.e. an observer position together with a direction of view. The
selection of good viewpoints under different types of projections and with
different measures of goodness is investigated by Kamada and Kawai (1988),
Bose et al. (1996), and Webber (1997). Here, we use a simple heuristic to find
a decent viewpoint under perspective projection once after each modification
of the graph, i.e. after computing x(t, 2). In the course of the animation we
let the observer follow a spline through these points while focusing on the
origin.

Starting point for the definition of good viewpoints are bad viewpoints.
A viewpoint is said to be bad, if it yields a projection in which an item hides
another one, or false incidences are suggested. A projection is said to cause
an occlusion, if a vertex or point of an edge coincides with another vertex or
point of an edge in the projection, but not in the three-dimensional layout.
Depending on the type of overlap, we distinguish vertex-vertex, vertex-edge,
and edge-edge occlusions, respectively. See Figure 3.11.
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For a given distance from the origin, we can imagine the observer sitting
on a sphere centered at the origin. Recall that we let the observer focus
on the origin at all times. A point on the sphere yields an occlusion, if it
is collinear either with two vertices, a vertex and an edge, or two edges.
However, edge-edge occlusions are ignored altogether, because the points on
the sphere that are collinear with any two points of a pair of non-coplanar
edges cover too large an area on the sphere. In general we cannot expect to
find any point on the sphere not causing an edge-edge occlusion, anyway.

To further simplify the problem, we subdivide edges with auxiliary ver-
tices and compute only vertex-vertex occlusion points on the sphere. The
goodness of a viewpoint is then defined to be its minimum great-circle dis-
tance from any occlusion point computed. Webber (1997) calls this measure
of goodness rotational separation. For the animation we approximate the
best viewpoint under rotational separation within great-circle distance at
most π/2 from the previous one to suppress large rotations. Finally, another
simple heuristic is used to fit the graph onto the screen by adjusting the
radius of the observer sphere.

3.3.3 Rendering and Examples

As a small hint on the actual content of the graph, vertices are represented
by boxes with corresponding web pages texture-mapped onto their sides.
Otherwise the semantics of the graph are not considered in the rendering
specification. Figure 3.12 shows the initial frame with manually modified
positions to achieve greater effect. Springs are used to render edges, just
because they are reminiscent of the physical analogy underlying the layout.
It is a by-product that their coils also visualize the stress on an edge. It can
be seen from Figure 3.13 that referred pages are hooked to their referrering
pages. In the case of bidirectional edges, both ends are hooked. Edges added
or deleted in a modification are highlighted during that event. A spherical
grid surrounding the graph helps to distinguish between vertex movements
and movements of the viewpoint.

Spline break points and rendering information are specified in a POV-
Ray13 scene description file. Using the ray tracer a large number of still
frames (50 per modification) is generated. These are subsequently converted
into the animation. Figures 3.14 and 3.15 present a number of sample frames
from two modification subsequences to give an idea of how the animation
proceeds. A more elaborate rendering is shown in Figure 3.16.14

13See http://www.povray.org/.
14This image is from a remake of our animation computed on the world record size

Linux cluster put together during the 1998 WDR Computernacht.
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Figure 3.12: Web pages are texture mapped onto boxes

Figure 3.13: Links are represented by springs hooked to the box of the refer-
ring page, or both boxes if links are symmetric
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Figure 3.14: First and last frame for modifications six to nine
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Figure 3.15: Snapshots between modifications 20 and 32
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Figure 3.16: The Graph Theater (rendition by Thomas Willhalm)
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3.4 Case Study III: Train Connections

The problem of our final case study arises from a cooperation with a sub-
sidiary of the Deutsche Bahn AG , TLC/EVA. The aim of this cooperation
is to develop data reduction and visualization techniques for the explorative
analysis of large amounts of time table data from European public transport
systems. For the most part these comprise train schedules, but occasionally
the data also contains bus, ferry and footpath connections. Analysis of the
data with respect to completeness, consistency, changes between consecutive
periods of schedule validity, and so on is relevant, e.g., for quality control,
(international) coordination, and pricing. Graph layout is to aid visual in-
spection of this data.

3.4.1 Time Table Graphs

Figures 3.17 and 3.18 show the kind of data that is provided. Since even for
moderately important stops like the German part of Konstanz main station
there are about 100 trains regularly arriving or leaving, realistic input is quite
large. To condense the input, a so-called time table graph is built in the fol-
lowing way. For each regular stop of any vehicle, a vertex is inserted into the
graph. Two vertices are connected by exactly one edge, if there is any service
running from one station to the other (or vice versa) without intermediate
stops. Hence, the graphs considered here are simple and undirected.

An important part of the analysis is the classification of edges in two
categories: minimal edges and transitive edges. Minimal edges are those
corresponding to a set of continuous connections between two stations not
passing through a third one. Typically, these are induced by regional trains
stopping at, as they say, every tree. On the other hand, transitive edges
correspond to connections passing through other stations without halting.
These are induced by through-trains. The substance of a time table graph is
the existence or absence of non-stop connections between any two stations,
and the classification of each connection into minimal or transitive. Our aim
is to design graphical representations clearly displaying the time table graph
and a given edge classification.

In a graphical design, classification of edges is easily coded using the
color property. Figure 3.19(a) shows a small part of a time table graph with
edges colored according a given classification. Stations are positioned at their
geographical location, and all edges are represented straight-line. An obvious
problem for determining the existence or absence of a connection, and for
display ergonomics, are edge overlaps and small angles between edges. In
order to maintain geographic familiarity, though, we are not allowed to move
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(...)

8000880 Radolfzell -58.5 -510.8 (...)

(...)

8003400 Konstanz -43.5 -519.8 (...)

8003401 Konstanz-Petersh. -43.5 -518.2 (...)

8003416 Konstanz-Wollmat -45.1 -517.5 (...)

(...)

8506131 Kreuzlingen -40.2 -524.5 (...)

(...)

Figure 3.17: Excerpts from a station list. Each station has a unique iden-
tification number used in the train schedule. Coordinates are in kilometers
relative to Hannover (other data omitted)

*Z 05130 85 01

*G SE 8506131 8001790

*A VE 8506131 8001790 000000

*A G 8506131 8001790

8506131 Kreuzlingen 1112 (...)

8003400 Konstanz 1115 1125 (...)

8003401 Konstanz-Petersh. 1127 1128 (...)

8003416 Konstanz-Wollmat 1130 1130 (...)

8004997 Reichenau(Baden) 1132 1133 (...)

8002683 Hegne 1135 1135 (...)

8000496 Allensbach 1138 1138 (...)

8003872 Markelfingen 1143 1143 (...)

8000880 Radolfzell 1147 1149 (...)

8001059 Böhringen-Rickelsh. 1152 1152 (...)

8000073 Singen(Hohentwiel) 1158 1200 (...)

8004107 Mühlhausen(b Engen) 1206 1206 (...)

8006321 Welschingen-Neuhaus. 1209 1209 (...)

8001790 Engen 1212 (...)

Figure 3.18: Schedule of a single train. It lists all stations hit by the train
with arrival and departure time (other data omitted)
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(b) Bézier curves

Figure 3.19: Different representations of transitive edges in a small time table
graph

vertices, and since minimal edges usually represent actual railways, they are
best represented straight-line. It seems therefore reasonable to change the
representation of transitive edges to Bézier curves as shown in Figure 3.19(b).
These provide the flexibility to route an edge such that overlaps and small
angles are resolved. In general, representation of non-stop connections by
curved lines not only helps to reduce visual clutter and ambiguity, but also
directly resembles the intuition of fast vehicles passing by minor stops.

3.4.2 Curved Edge Layout

The layout elements that need to be positioned to render Bézier curves are
their control points. In fact, we may consider stations and control points to
be vertices of an auxiliary graph, so that rules for favorable positioning can
be modeled by auxiliary edges of appropriate desired length, thus formulating
the problem in terms of a straight-line layout. With a different objective in
mind, curved edge layout is treated as a routing problem in Dobkin et al.
(1997) and Gansner and North (1998).

We now give a random field model for the layout of a time table graphG =
(V,E). Vertex positions are given by geographical locations of corresponding
stations, and we identify vertices with their position. Minimal edges as well
as very long transitive edges are represented straight-line.15 For the other
edges we use cubic Bézier curves (cf. Figure 3.20). Let Ĕτ1 ⊆ E be the set
of transitive edges of length less than a threshold parameter τ1, such that

15It will be obvious from the examples presented in Section 3.4.3 why it is not useful to
represent all transitive edges by Bézier curves.
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Figure 3.20: Bézier cubic curve (Bézier, 1972). Two endpoints and two
control points define a smooth curve that is entirely enclosed by the convex
hull of these four points

the set of layout elements consists of two control points for each edge in Ĕτ1 ,

L =
{
bu(e), bv(e) : e = {u, v} ∈ Ĕτ1

}
. If two Bézier points belong to the

same edge, they are called partners. The anchor, abv(e), of any bv(e) ∈ L is
v. All Bézier points are initially positioned on the straight line through the
endpoints of their edges at equal distance from their anchor and from their
partner.

The position assigned to a Bézier point is influenced by its partner, its
anchor, all Bézier points with the same anchor or initially close positions,
and all stations near the initial position. Let {u, v} ∈ Ĕτ1 be a transitive
edge, and let b ∈ L be a Bézier point of {u, v}. Given two parameters ε1 and
ε2, consider an ellipse with major axis going through u and v. Let its radii
be ε1 · d(u,v)2

and ε2 · d(u,v)2
, respectively. We denote the set of all stations and

Bézier points (at their initial position) within this ellipse, except for b itself,
by Eb. Recall that the neighborhood of some layout element consists of all
those layout elements that have an influence on its positioning. Therefore, ηb
equals the union of Eb∩L with the set of Bézier points with the same anchor
as b and (since interactions need to be symmetric) the set of Bézier points b′

for which b ∈ Eb′. We used ε1 = 1.1 and ε2 = 0.5 for the examples presented
in Section 3.4.3.

An interaction potential is defined for each criterion that a good layout
of Bézier points should satisfy:

• Distance to stations. For each Bézier point b ∈ L of some edge {u, v} ∈
Ĕτ1 , there are repulsion potentials

∑

w∈Eb∩V
Repulsion

(
xb, w

∣∣ (%1 · lb)4
)
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with lb = d(u,v)
3

and %1 a constant. These ensure reasonable distance
from stations in the vicinity of b and can be controlled via %1. A
combined repulsion and attraction potential

Distance (xb, ab | l1 · lb )

with l1 a distance controlling constant, keeps b sufficiently close to its
anchor ab.

• Distance to near Bézier points. As is the case with near stations, a
Bézier point b1 ∈ L should not lie too close to another Bézier point
b2 ∈ ηb1 . If b1 is neither the partner of nor bound to b2 (binding is
defined below), we add

Repulsion
(
xb1 , xb2

∣∣ %4
2 ·min{l4b1 , l4b2}

)

The desired distance between partners b1 and b2 is equal to the desired
distance from their respective anchors,

Distance (xb1 , xb2 | l1 · lb1 )

• Binding. In general, it is not desirable to have Bézier points b1, b2 ∈ L
with a common anchor lie on different sides of a minimal edge path
through the anchor. Therefore, we bind them together, if lb1 does not

differ much from lb2 , i.e. if 1
τ2
<

lb1
lb2
< τ2 for a threshold τ2 ≥ 1, we add

potentials

ω · Distance (xb1 , xb2 | l2 · (lb1 + lb2)/2)

where l2 is a stretch factor for the length of binding edges, and ω
controls the importance of binding relative to the other potentials.

Altogether, this following layout model is made of nothing but attraction
and repulsion potentials that define an auxiliary graph layout problem in
the following way: Stations correspond to vertices with fixed positions, while
Bézier points correspond to vertices to be positioned. Edges of different
desired lengths exist between Bézier points and their anchors, between part-
ners, and between Bézier points bound together. Just like edge lengths, the
magnitude of repulsion differs across the elements. See Figure 3.21 and recall
that repulsion potentials are defined on local neighborhoods. The respective
influence of different parameters is discussed in the following section.
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interaction potential

be(v) : be(v) ∈ L ∑
u∈Ebe(v)∩V Repulsion

(
xbe(v), u

∣∣ (%1 · lbe(v))4
)

be(v) : be(v) ∈ L Distance
(
xbe(v), v

∣∣ l1 · lbe(v)
)

be(v), be′(v
′) : v 6= v′, e 6= e′, be′(v′) ∈ Ebe(v) Repulsion

(
xbe(v), xbe′ (v′)

∣∣∣ %4
2 ·min{l4be(v), l4be′ (v′)}

)

be(v), be′(v
′) : v 6= v′, e = e′ Distance

(
xb1 , xbe′ (v′)

∣∣ l1 · lbe(v)
)

be(v), be′(v
′) : v = v′, e 6= e′, 1

τ2
<

lbe(v)

lbe′ (v′)
< τ2 ω ·Distance

(
xbe(v), xbe′ (v′)

∣∣ l2 · (lbe(v) + lbe′ (v′))/2
)

Figure 3.21: Time table graph layout model. For illustration, the auxiliary graph induced by Bézier point layout
interactions for the time table graph of Figure 3.19(b) is shown. Note that there is no binding between the two
layout elements indicated by filled rectangles, because anchor distances are too different (threshold parameter τ2)
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3.4.3 Experiments

The objective function described in the previous section was obtained only
after experimentation with a number of different potentials and parameters.
We started with a simple combination of repulsion from stations, and attrac-
tion and repulsion from partners and anchors. In fact, we then used splines
to represent transitive edges. It seemed that they offered better control, since
they actually pass through their control points. However, segments between
partners tended to extend far into the layout area. After replacing splines
by Bézier curves, the promising results encouraged us to try more elaborate
objective functions. It turned out that it is useful to represent long tran-
sitive edges straight-line, which led to the introduction of threshold τ1. A
new requirement we found while looking at earlier examples was that inci-
dent (consecutive or nested) transitive edges should lie on one side of a path
of minimal edges. Binding proved to achieve this goal, but needed to be
constrained to control segments of similar desired length, because otherwise
short transitive edges are deformed when bound to long ones. Threshold τ2

therefore controls the length ratio of bound segments.
The identification of a suitable vector θ = (%1, %2, l1, l2, ω, τ1, τ2) of pa-

rameters is a serious problem. Mendonça and Eades (1993) use two nested
simulated annealing computations to identify parameters of an energy based
placement model. In Masui (1994), a genetic algorithm is used to breed a
suitable objective function. However, both methods are heuristic in defining
their objective as well as in optimizing it. Given one or more examples which
are considered to be well done (e.g. by manual rearrangement), a theoreti-
cally sound approach would be to carry out parameter estimation for random
variable X(θ) describing the layout model as a function of parameter vector
θ. Given a layout x, the likelihood of θ is

P (X = x | θ) =
1

Z(θ)
exp {−U(x | θ)}

where Z(θ) =
∑

y∈X exp{−U(y | θ)} is the normalizing constant. A maxi-
mum likelihood estimate θ∗ is obtained by maximizing the above expression
with respect to θ. Unfortunately, computation of Z(θ) is practically in-
tractable, since it sums over all possible layouts. One might hope to reduce
computational demand by exploiting the locality of random fields (see, e.g.,
Winkler, 1995). Even though neighboring layout elements are clearly not
independent, reasonable estimates are obtained from the pseudo-likelihood
function (Besag, 1986)

∏

λ∈L

1

Zλ(θ)
exp

{
−
∑

C∈C :λ∈C
UC(x | θ)

}
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with Zλ(θ) =
∑

xλ∈Xλ exp{−∑C∈C :λ∈C UC(x | θ)}. However, Zλ(θ) sums over
all possible positions of layout element λ, such that maximization is still
intractable in this setting. So we exploit locality in a very different way,
namely by experimenting with small examples in a feedback cycle. The
parameters θ thus identified proved appropriate even for huge graphs, because
the model scales so well.

Figure 3.22 lists the rationale behind each parameter in θ = (%1, %2, l1, l2,
ω, τ1, τ2) together with our final choice of values. The effects of some pa-
rameters are demonstrated in Figure 3.23. Figures 3.23(a) and 3.23(b) show
how increased repulsion parameters spread Bézier points. Without binding,
curves tend to lie on different sides of minimal edges as in Figure 3.23(c),
and Figure 3.23(d) shows that this can even be enforced. Obviously, binding
is a valuable refinement.

Our implementation of a random field layout module (Section 2.2.3) en-
abled us to experiment with parameters in all of the above layout models
without implementing each preliminary model from scratch.

The original data sets provided by TLC/EVA are quite large: For a time
table graph of the size shown in Figure 3.27 (roughly 2,000 vertices and
4,000 edges), about 11 MByte of time table data were evaluated. Connections
are classified into minimal and transitive edges using existing code.

A first example is shown in Figure 3.24. The graph contains regional
trains in south-west Germany. Edge classification, transformation into a lay-
out graph, neighborhood generation, and layout computation took less than
two minutes. The example demonstrates how visual inspection can immedi-
ately yield some candidates for misclassified edges. Parts of the drawing are
magnified in Figures 3.25 and 3.26. A few labels have been added to support
geographical location of the area shown, but otherwise the drawings have not
been modified. Verify that connections can be told apart quite well, and that
binding successfully causes incident (consecutive or nested) transitive edges
to lie on the same side of minimal edges.

Larger examples are given in Figures 3.27 and 3.29. One readily ob-
serves that the algorithm scales very well, i.e. increased size of the graph
does not reduce layout quality on more detailed levels as can be seen in
Figures 3.28 and 3.4.3. This is largely due to the fact that neighborhoods
remain fairly local. Together with the ability to zoom into different regions,
data exploration is well supported. The advantage of a length threshold for
curved transitive edges is another straightforward observation, notably in
Figures 3.29 and 3.30(a).

On these larger examples, the implementation based on simulated an-
nealing is rather slow. But since our final model uses only attraction and
repulsion potentials, the potentials can be replaced by equivalent attractive
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(a) θ = (0.3, 0.7, 0.7, 0.5, 0.4, 100, 2.2)

controls
%1 distance of Bézier points from stations
%2 mutual distance of Bézier points
λ1 length of control segments
λ2 length of bands
ω importance of binding
τ1 threshold for straight transitive edges
τ2 threshold for binding segments of different length
ε1 major axis radius of neighborhood defining ellipse
ε2 minor axis radius of neighborhood defining ellipse

(b) Parameters of the time table graph layout model

Figure 3.22: Parameters in the time table graph layout model and a recom-
mended choice applied to a small time table graph. Control segments shown
instead of Bézier curves (cf. Figure 3.23)
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(a) Station repulsion (b) Segment stretching

θ = ( 5 , 0.7, 0.7, 0.5, 0.4, 100, 3) θ = (0.3, 4 , 1 , 0.5, 0.4, 100, 3)

(c) No binding (d) Inverse binding

θ = (0.3, 0.7, 0.7, 0 , 0 , 100, 0 ) θ = (0.3, 0.7, 0.7, 2 , 1 , 100, 3)

Figure 3.23: Effects of some parameters demonstrated. For ease of compari-
son, control segments are shown instead of the corresponding Bézier curves.
All examples have ε1 = 1.1 and ε2 = 0.5 and should be compared to Fig-
ure 3.22
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and repulsive forces which are much more amenable to deterministic local
optimization. By implementing an algorithm similar to that of Fruchterman
and Reingold (1991), layout computation times could be reduced by a factor
of ten to within a few minutes.

PSfrag replacements
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Figure 3.24: Regional trains in south-west Germany. 619 vertices, 876 edges
(229 transitive), θ = (0.7, 0.3, 0.7, 0.5, 0.4, 100, 3). Arrows point out two out
of several edges that appear to be misclassified
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Figure 3.25: Magnification from Figure 3.24
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Figure 3.26: Magnification from Figure 3.24
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Figure 3.27: Italian train and ferry connections. 2,386 vertices, 4,370 edges
(1,849 transitive), θ = (0.7, 0.3, 0.7, 0.5, 0.4, 100, 3)
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Venezia S. Lucia

Figure 3.28: Magnification from Figure 3.27
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Figure 3.29: French connections. 4,551 vertices, 7,793 edges (2,408 transi-
tive), θ = (0.7, 0.3, 0.7, 0.5, 0.4, 100, 3)
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(a) Paris has six long-distance stations

PSfrag replacements

Strasbourg

(b) Strasbourg, gateway to France

Figure 3.30: Magnifications from Figure 3.29



Chapter 4

Intermezzo

The case studies of the previous chapter demonstrated that energy based
placement, together with a general (approximate) optimization scheme, lends
itself to rapid prototyping of layout models. This is because of the inher-
ent flexibility to arbitrarily combine various local criteria. However, when
a satisfactory model is identified, such flexibility is an unnecessary feature
dominated by the need for faster layout computation.

A closer look at the time table graph layout model of Section 3.4 revealed
that a faster, deterministic, algorithm could be applied to obtain approximate
solutions of the same quality. In this chapter, we discuss a family of energy
based placement models which, despite their simplicity, have a number of
very interesting properties. In particular, it turns out that optimal layouts
can be determined efficiently. Recall that energy minimization was shown to
be NP-hard in general (Theorem 2.1).

However, it turns out that these models have some provable drawbacks,
too. One of them is that angles formed by incident edges may be tiny, a
problem that was circumvented by curved representation of transitive edges
in time table graphs. This chapter thus bridges the gap to the next, in which
layout methods are considered that determine angles in graphical presenta-
tions prior to positions of graphical marks.

4.1 Barycentric Layouts

A surprisingly interesting layout model for straight-line representations of
simple, undirected graphs G = (V,E) in d-dimensional Euclidean space is
the simplistic barycentric layout model (Tutte, 1963)

interaction potential

u, v : {u, v} ∈ E Attraction (xu, xv)

79
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Similar to the spring embedder, this layout model can be interpreted in terms
of a spring system. Due to the absence of repulsion the ideal length of the
springs is zero, though. Since different connected components do not interact,
we restrict ourselves to connected graphs throughout this section.

Obviously, every layout assigning the same position to all vertices is op-
timal, and every optimal layout has this rather useless form. So, what could
possibly be interesting about this model?

A natural way to explore an imaginary spring system of the above type
would be to drag some some of the vertices apart and watch the structure
unfold. More formally, the model is generalized by introducing fixed positions
y = (yv)v∈V0

for some subset V0 ⊆ V of vertices. The barycentric layout
model is therefore considered in the following form

interaction potential

u, v : {u, v} ∈ E Attraction (xu, xv)

dependency constraint

v : v ∈ V0 xv = yv

Three naturally arising questions are treated in this section:

1. What do optimal layouts look like?

2. Can they be efficiently determined?

3. Why is this model called barycentric, anyway?

4.1.1 Optimal Layouts

The energy of a d-dimensional layout in the barycentric model is

U(x) =
∑

{u,v}∈E
d(xu, xv)

2 =
d∑

i=1

∑

{u,v}∈E

(
x(i)
u − x(i)

v

)2

where xv = 〈x(1)
v , . . . , x

(d)
v 〉, v ∈ V . A necessary condition for layouts to

minimize this energy is that partial derivatives vanish, that is

∂U

∂x
(i)
v

=
∑

u : {u,v}∈E
2
(
x(i)
v − x(i)

u

)
= 0

for all v ∈ V \ V0, i = 1, . . . , d. Obviously, coordinates can be considered
independently. For convenience we hence state the subsequent observations
in terms of one-dimensional layouts, and it is understood that this layout may
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represent but one dimension of a higher dimensional problem. Rewriting the
necessary conditions for all v ∈ V \ V0 into

xv =
1

dG(v)

∑

u : {u,v}∈E
xu

shows that, in an optimal layout, each vertex of V \ V0 is positioned in the
barycenter of its neighbors. We have thus answered the question about the
name of the model, and we have also found a first property of optimal layouts.

For ease of notation, henceforth assume that V = {1, . . . , n} and V0 =
{v : v ≤ k} for some k ∈ {0, . . . , n}. Let A(G) be the adjacency matrix of
G with rows and columns ordered according to vertex numbers, and define
the diagonal degree matrix D(G) = (duv)1≤u,v≤n of G by

duv =

{
dG(v) if u = v

0 otherwise

The above optimality conditions can be stated more compactly using the
Laplacian matrix L(G) = (luv)u,v∈V = D(G) − A(G). If V0 = ∅, i.e. no
vertex position is fixed in advance, optimal layouts satisfy

L(G) · x = 0

If V0 6= ∅, some equations are not required since fixed vertex positions need
not satisfy the local optimality conditions. Let L(G)uv be the matrix obtained
from L(G) by striking out the u-th row and v-th column, where L(G)uv,u

′v′

is shorthand for (L(G)uv)u
′v′ . Note that rows and columns can be dropped

in any order. We hence let L(G)V
′

denote the matrix obtained from L(G)
by striking out the rows and columns of all vertices of some V ′ ⊆ V . The
generalized form of the optimality conditions is given by the smaller system
in which prescribed positions are brought to the right hand side

L(G)V0 · xV \V0 =


 ∑

u∈V0:{u,v}∈E
yu




T

v∈V \V0

To proof that this system of linear equations is indeed solvable, and moreover,
that it has a unique solution, it is shown that |L(G)V0 |, the determinant of
L(G)V0 , is positive.

First note that for the graph G/V0 obtained from G by contracting
the vertices of V0 into a new vertex v0 and omitting all resulting loops,
L(G/V0)v0v0 = L(G)V0 . That is, the same matrix is encountered in a barycen-
tric layout model that fixes only a single vertex position.
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The following beautiful theorem is due to Kirchhoff (1847), and its use for
graph layout was already noted in Maxwell (1874). A commonly cited proof is
from Trent (1954), but relies on the Binet-Cauchy formula for determinants of
matrix products. We here state a compact version of the elementary proof of
Brooks et al. (1940) and, independently, Hutschenreuther (1967). A number
of generalizations is given in Chaiken and Kleitman (1978).

A graph G′ = (V ′, E ′) is a subgraph of a graph G = (V,E), if V ′ ⊆ V and
E ′ ⊆ E. It is a spanning subgraph, if V ′ = V . A graph is called a tree, if it
is connected and contains no cycles. A spanning subgraph that is a tree is
called a spanning tree.

Theorem 4.1 (Matrix Tree Theorem) For every vertex v of a multi-
graph G, |L(G)vv| equals the number of spanning trees of G.

�
Proof Let t(G) denote the number of spanning trees of G. If G contains

only a single vertex v, then |L(G)vv| = t(G) = 1 by definition, and if G is
not connected, |L(G)vv| = t(G) = 0 for every v ∈ V . Therefore, let G
be a connected graph with more than one vertex. For every vertex v ∈ V
there is at least one edge e = {u, v} ∈ E that is not a loop. Let G − e
denote the graph obtained by deleting the edge e, and G/e denote the graph
obtained by contracting u and v (and all edges between them) into a new
vertex ve. All spanning trees of G either contain e, or do not contain e.
Hence, t(G) = t(G/e) + t(G− e). Moreover, expanding by the row of u,

|L(G)vv| =
∑

w 6=v
luw · σv(u, w) · |L(G)vv,uw|

=
∑

w 6=u,v
luw · σv(u, w) · |L(G)vv,uw|

+(luu − 1) · |L(G)vv,uu|+ |L(G)vv,uu|
=

∑

w 6=u,v
luw · σv(u, w) · |L(G)vv,uw|

+(dG(u)− 1) · σv(u, u) · |L(G)vv,uu|+ |L(G/e)veve |
= |L(G− e)vv|+ |L(G/e)veve |

where

σv(u, w) =

{
(−1)u+w if v < u, w or v > u, w
(−1)u+w−1 if u < v < w or w < v < u

The theorem follows from induction on the number of vertices and edges
of G. 
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Since G/V0 is connected if G is, there is at least one spanning tree and
therefore |L(G/V0)v0v0 | = |L(G)V0| > 0. Non-negativity of the barycentric
energy then implies that there is a unique layout satisfying the optimality
conditions.

Corollary 4.2 Let G = (V,E) be a connected graph and V0 ⊆ V any non-
empty set of vertices with fixed positions. Then there is a unique optimal
layout in the barycentric layout model which can be determined by solving,
for each dimension of the layout space, a system of |V \ V0| linear equations.

Standard methods for solving systems of linear equations hence lead to
an O(n3) algorithm for energy minimization in the barycentric layout model.
If the input graph is sparse, more advanced methods can be applied.

The following important class of sparse graphs will play a crucial role
in the next chapter. A two-dimensional representation mapping vertices to
points and edges to continuous curves is called planar, if no to curves inter-
sect except at their endpoints. A graph is called planar, if it has a planar
representation. The cyclic orderings of edges around vertices in any planar
representation form a planar (combinatorial) embedding of the graph. Inter-
estingly, every planar embedding of a simple planar graph can be realized in
a planar straight-line representation (Wagner, 1936; Fáry, 1948; Stein, 1951).

Since there are no edge crossings in planar representations, they subdivide
the layout area into connected regions. Each cyclic list of edges encountered
when walking around one such region, and sometimes the region itself, is
called a face of the embedded graph. Note that each edge is encountered
exactly twice, possibly in the same list. The number of edges encountered
around a face f is called the degree of the face and denoted by dG(f). A
planar embedded graph is therefore given by a triple G = (V,E, F ), where
F denotes the set of faces. To limit the set of possible planar representations
one face might be prescribed to be the external (i.e. unbounded) face. All
other faces are then called internal .

For planar graphs, the system of linear equations of the barycentric lay-
out model can be solved in time O(n1.5) (Lipton et al., 1979), but some pla-
nar graphs reveal even more surprising properties of the barycentric layout
model. Any graph is biconnected (triconnected), if at least two (three) ver-
tices must be removed to disconnect the graph. Triconnected planar graphs
are especially interesting, e.g. because they have only one planar embedding
and because a triconnected graph is planar, if and only if it is the skeleton
of a convex polyhedron (Steinitz and Rademacher, 1934).

Theorem 4.3 (Tutte 1963) Let G be a planar triconnected graph and V0

be the set of vertices incident to the edges of a designated external face f0
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Figure 4.1: An optimal layout of a triconnected planar graph (cube connected
cycles) in the barycentric layout model. Vertices with prescribed position
have darker color

in the unique planar embedding of G. If (yv)v∈V0
maps this face to a convex

polygon preserving the cyclic order of vertices, then the unique optimal layout
of the barycentric layout model is planar, and every face is mapped to a convex
polygon.

It is not necessary that the input graph be triconnected. For example,
vertices subdividing edges and separation pairs contained in V0 do not affect
the layout properties claimed. Thomassen (1980) characterizes the class of
planar graphs that admit any planar straight-line representation with convex
faces.

Unfortunately, optimal barycentric layouts in general display some less
desirable properties, too. The next section discusses two of them.

4.1.2 Drawbacks

The barycentric layout model is conveniently described by a system of linear
equations with integer coefficients. An immediate consequence is that, if the
positions assigned to vertices in V0 6= ∅ have rational coordinates, then all
coordinates in the unique optimal layout are rational. By multiplication with
a constant they can be made integer, such that vertices of an optimal layout
can be placed on a sufficiently large integer grid. However, the following result
of Eades and Garvan (1996) shows that this grid has exponential area in the
worst case. That is, barycentric layouts may require exceedingly high display
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resolution and produce non-uniform edge lengths. We present a slightly
modified version of both the original theorem and proof.

Resolution of straight-line representations is defined in Eades and Garvan
(1996) as the ratio of the smallest distance between vertex positions to the
diameter of the set of vertex positions. We propose a slightly different notion
capturing the case that all vertices do have sufficient distance, but some are
only slightly off along one coordinate axis. Therefore, the (spatial) resolution
of a layout is defined to be the smallest non-zero ratio of the smallest to
largest difference in one coordinate between two vertex positions. Note that
this definition allows for different scalings along coordinate axes.

Theorem 4.4 (Eades and Garvan 1996) The worst case resolution of
optimal layouts in the barycentric layout model is O( 1

ln
), l > 1.

�
Proof Consider the family of triconnected graphs G(3), G(4), . . . , where

G(3) is a triangle with vertices v1, v2, v3, and G(n), n > 3, is obtained from
G(n − 1) by introducing a new vertex vn and connecting it to v1, v2, and
vn−1. For each of these graphs, positions are prescribed for vertices v1, v2,
and v3, namely yv1(n) = 〈−1, 0〉, yv2(n) = 〈1, 0〉, and yv2(n) = 〈0, 1〉. For
n = 5 we have

PSfrag replacements

v1 v2

v3

v4

v5

Let x(3), x(4), . . . be the sequence of optimal layouts in the barycentric layout

model. The y-coordinates satisfy x
(2)
vn−1(n) < x

(2)
vn−1(n− 1) for all n > 4, and

x(2)
vn (n) = 1

3
·
(
x(2)
v1 (n) + x(2)

v2 (n) + x(2)
vn−1(n)

)
= 1

3
· x(2)

vn−1(n). The resolution

of x(n), n > 3 is hence at most x
(2)
vn (n)/x

(2)
v3 (n) ≤ 1

3n−3 . The argument
generalizes to barycentric layouts in any other number of dimensions. �

Exponentially small worst case resolution is poor compared to the optimal
O( 1

d√n) obtained by filling the vertices into a d-dimensional grid. Even for

planar layouts, each planar layout algorithm embedding the graph in a grid
of size O( 1

n
)×O( 1

n
) (e.g. Kant 1996; de Fraysseix et al. 1990; Schnyder 1990)

yields a resolution of O( 1
n
).
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Theorem 4.1 is readily generalized to graphs with positive edge weights,
and likewise the barycentric layout model. It is an interesting open problem,
whether the worst case resolution of barycentric layouts can be improved by
suitably placed edge weights.

A similar notion of resolution applies to the angles formed by incident
edges. Formann et al. (1993) define the angular resolution of a straight-line
representation to be the minimum angle formed by any two incident edges.
The visual clutter caused by small angles was already noted in the application
of general energy layout methods to time table graphs (Section 3.4). We use
the construction of Eades and Garvan (1996) to show that barycentric layouts
may also display poor angular resolution.

Corollary 4.5 The worst case angular resolution of optimal layouts in the
barycentric layout model is O( 1

αn
), α > 1.

�
Proof Consider the family of graphs G(3), G(4), . . . and associated

layouts x(3), x(4), . . . from the proof of Theorem 4.4. Since the angle formed

by edges {v1, v2} and {v1, v3} is π
4

and x
(2)
vn (n) < 1

3
· x(2)

vn−1(n − 1), the angle
formed by edges {v1, v2} and {v1, vn} in layout x(n) is at most half the angle
formed by edges {v1, v2} and {v1, vn−1} in layout x(n− 1), n > 3. �

In Section 5.1.3 it will be shown that this is again poor performance. It
is open, however, whether this is true also for planar straight-line representa-
tions. Anyhow, up to now no precautions have been taken to control angles
resulting from our layout models. The next chapter considers layout methods
that do explicitly determine angles prior to assigning positions.



Chapter 5

Angle Flow Layouts

In the previous chapter it was shown that the barycentric layout approach
can lead to at least exponentially bad resolution in both distances and angles,
even for planar graphs. This was argued to be poor for distances, but it is
not known whether it is possible to generate planar layouts with significantly
better angular resolution. While there is no control over the angles result-
ing from barycentric layouts, this chapter focuses on methods to explicitly
compute the angles a layout is to display before positioning the vertices.

Intermediate representations or graph transformations are often used to
exploit special properties of a graph or representation in algorithmic ap-
proaches to graph layout. Clearly, several such steps can be performed one
after the other. Di Battista et al. (1999) classify graph layout approaches ac-
cording to the respective sequence of transformations. In particular, they de-
scribe the Topology-Shape-Metrics approach for polyline representations with
axis-parallel edge segments, which is easily generalized to arbitrary polyline
representations. Roughly speaking, it consists of the following three steps:

1. Planarization: The graph is made planar, e.g. by introducing dummy
vertices to represent edge crossings of a given embedding. The resulting
planar graph might also be augmented to satisfy properties like bi- or
triconnectedness required by some layout algorithms (see Kant, 1993,
for an extensive discussion). Planarization under several circumstances
is discussed by Jünger and Mutzel (1996). In any case, the output is
a planar combinatorial embedding, and the topology of the layout is
given by this embedding of the planarized graph.

2. Angle assignment: Given a planar graph and the ordering of edges
around vertices and faces, the angles between incident edges (or edge
segments) define the shape of the layout.

87
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3. Length assignment: Finally, a feasible length is determined for each
edge (or edge segment) in a layout with given topology and shape.

We focus on the second step. Throughout this chapter, we assume that we
are given a graph that is planar and embedded, or plane for short. We will
see that angles in layouts with prespecified topology form a network flow.
Unfortunately, not every angle assignment corresponding to a feasible flow
in this network yields a planar straight-line representation. Some important
special cases, though, are indeed characterized by variants of the network flow
model. For instance, flow techniques are used for upward drawings of planar
graphs (straight-line representations of graphs in which all directed edges
point upwards) in Bertolazzi and Di Battista (1991), and bend-minimum
shapes for orthogonal representations of plane graphs with maximum vertex
degree at most four are obtained in Tamassia (1987). In an orthogonal rep-
resentation each edge is represented by an alternating sequence of horizontal
and vertical straight line segments, i.e. all angles are multiples of π

2
.

The basic network flow model is introduced in Section 5.1, and some of
its properties and limitations are discussed. In particular, we prove in Sec-
tion 5.1.3 that, given a triconnected planar graph that is to be represented
on the sphere, angle assignments with asymptotically optimal angular resolu-
tion can be obtained in the flow model. Since this model does not necessarily
yield realizable shapes, however, this result is only of theoretical interest. The
bend-minimum shape model of Tamassia is put in context in Section 5.2. Fol-
lowing the Bayesian framework introduced in Section 2.2, a general tool for
the extension of network based orthogonal shape implementations to dynamic
graphs is introduced in Section 5.3.

5.1 Angles in Plane Graphs

Shapes of planar straight-line representations of plane graphs are given by
angles between each pair of consecutive edges of a face. We index an angle
with the pair consisting of its vertex and the face it opens to. In this section,
a network flow model for angle assignment is developed, and its limitations
with respect to straight-line or great-circle representations are discussed.

5.1.1 Angle Networks

Let G = (V,E, F ) be a plane graph. The layout elements in this chapter are
angles between pairs of edges or edge segments. For ease of notation, we use
variables x(v,f) ∈ [0, 2π] to denote the angle between consecutive edges of a
face f ∈ F sharing a vertex v ∈ V . It will be clear from context, which angle
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2π (5− 2) · π 5 · 2π − (5− 2) · π

Figure 5.1: Conditions for locally consistent angles illustrated

is referred to in case v is a cutvertex, i.e. a vertex whose removal disconnects
the graph. Bend angles will be represented differently (see Section 5.2.1).
Two obvious conditions are necessary for an angle assignment to describe
the shape of a planar straight-line representation (Vijayan 1986; Malitz and
Papakostas 1994; see Figure 5.1):

1. Vertex constraints: The angles around each vertex must sum up to 2π,
∑

f ∈ F incident to v

x(v,f) = 2π for all v ∈ V

2. Face constraints: Since each internal face f with dG(f) edges must
form a polygon with dG(f) vertices, the angles around this face sum
up to (dG(f)− 2) · π,

∑

v ∈ V incident to f

x(v,f) = (dG(f)− 2) · π for all f ∈ F − f0

Clearly, the angles between consecutive edges of the external face cor-
respond to the external angles of a polygon with dG(f0) vertices,

∑

v ∈ V incident to f0

x(v,f0) = dG(f0) · 2π− (dG(f0)− 2) · π = (dG(f0) + 2) · π

The angle assignment of a plane graph is said to be locally consistent,
if it satisfies all vertex and face constraints. The pairs of vertices and faces
forming the indices of variables suggest to think of angles as a commodity that
is produced at vertices and consumed in faces. This view leads directly to
an elegant formulation of the angle assignment problem in terms of network
flow.
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A flow network is a directed graph N = (W,A) together with a de-
mand/supply function b : W → � that satisfies the total mass balance con-
straint,

∑
w∈W b(w) = 0, lower capacities l : A → � , and upper capacities

u : A → � . To distinguish between networks and other graphs, we call the
elements of W the nodes, and the elements of A the arcs of the network. A
node u with b(w) > 0 has a supply of b(w), while a node w with b(w) < 0
has a demand of b(w).

A vector x = (xa)a∈A is a flow, if it satisfies the capacity constraints
l(a) ≤ xa ≤ u(a) for all a ∈ A, and the flow conservation constraints

b(w) =
∑

(w′,w)∈A
x(w′,w) −

∑

(w,w′)∈A
x(w,w′)

for all w ∈ W . If
∑

(w′,w)∈A x(w′,w) =
∑

(w,w′)∈A x(w,w′) for all w ∈ W , x is
called a circulation. In a positive flow, xa > 0 for all a ∈ A. For an abundant
reference on numerous topics related to flow networks see Ahuja et al. (1993).

We can now easily think of angles satisfying the vertex and face con-
straints as a flow commodity distributed through a fairly simple network.

Definition 5.1 (Angle network) Let G = (V,E, F ) be a plane graph.
The angle network A(G) = (W,A; b, l, u) with respect to a designated ex-
ternal face f0 is defined by

W = V ∪ F
A = {(v, f) ∈ (V × F ) : v incident to f}

b(v) = 2π for all v ∈ V
b(f) = − (dG(f)− 2) · π for all f ∈ F − f0

b(f0) = − (dG(f0) + 2) · π

l(a) = 0 for all a ∈ A
u(a) = 2π for all a ∈ A

where the elements of A have appropriate multiplicity.

Angle networks thus reflect that each vertex has a supply of 2π radians
which is to be distributed among the incident faces. Each face demands the
amount of radians appropriate for a polygon with a number of vertices equal
to the degree of the face. The demand/supply of an angle network satisfies
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Figure 5.2: Great-circle representation of the graph from Figure 4.1 (optimal
layout in a modified barycentric model)

the total mass balance constraint,

∑

w∈W
b(w) =

∑

v∈V
b(v) +

∑

f∈F
b(f)

= |V | · 2π −


 ∑

f∈F\f0

(dG(f)− 2)


 · π − (dG(f0) + 2) · π

= |V | · 2π −
(∑

f∈F
dG(f)

)
· π + 2(|F | − 1) · π − 2 · π

= |V | · 2π − 2|E| · π + |F | · 2π − 2 · 2π
= 0

since
∑

f∈F dG(f) = 2 · |E| and |V | − |E|+ |F | = 2 (Euler’s formula).

Every planar polyline representation of a graph in the plane is a distorted
representation of the graph in the sense that one face occupies an infinite area.
It seems more appropriate to represent planar graphs in a closed surface,
particularly a sphere. The analog of a straight line connecting two points
in the plane is the shorter segment of a great-circle connecting two non-
diametral points on the sphere. The great-circle of a pair of non-diametral
points on the sphere is the intersection of the sphere with the unique plane
defined by these two points and the center of the sphere. Figure 5.2 shows a
great-circle representation of the graph from Figure 4.1.
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Angles of great-circle representations can be described in the same way as
in straight-line representations, provided the face constraints are adjusted.
Girard’s theorem states that the sum of the angles in a spherical polygon
is always greater than or equal to the sum of the angles in a plane polygon
with the same number of vertices. Moreover, the difference between these
two sums equals the area of the spherical polygon divided by the squared
radius of the sphere. This difference is called the spherical excess. Since the
area of the unit sphere equals 4π, the spherical face constraints read

∑

v ∈ V incident to f

x(v,f) ≥ (dG(f)− 2) · π for all f ∈ F

and ∑

f∈F

∑

v ∈ V incident to f

(
x(v,f) − (dG(f)− 2) · π

)
= 4π

Definition 5.2 (Spherical angle network) The spherical angle network
S(G) of a plane graph G = (V,E, F ) equals A(G), except that

b(f) = −
(

(dG(f)− 2) · π + εf
)

for all f ∈ F

with parameters εf ≥ 0 for all f ∈ F , where
∑
f∈F

εf = 4π.

Again, the total mass balance constraints are easily verified:

∑

w∈W
b(w) =

∑

v∈V
b(v) +

∑

f∈F
b(f)

= |V | · 2π −
(∑

f∈F
dG(f)

)
· π + 2|F | · π −

∑

f∈F
εf

= |V | · 2π − 2|E| · π + |F | · 2π − 2 · 2π
= 0

Flows in A(G) or S(G) are called angle flows or spherical angle flows,
respectively. Clearly, (spherical) angle flows are exactly those angle assign-
ments satisfying all vertex and (spherical) face constraints. Network flows can
therefore be used to study feasibility problems related to angle assignments.
While the remainder of this section is devoted to this kind of problems, we
will see in Section 5.2 that, by imposing a cost function, network flow tech-
niques can also be used to additionally guarantee certain properties of angle
assignments.
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Figure 5.3: A plane graph that has no straight-line representation preserving
the indicated angle assignment (note that the shaded faces form isosceles
with a common side)

5.1.2 Planar Realizability

The question immediately arising from the above observations is, whether the
shape of planar straight-line or great-circle representations of plane graphs
can be determined by using standard network flow techniques?

Unfortunately, the answer is no. Consider the angle assignment for a
plane K4, the complete graph on four vertices, in Figure 5.3. Although all
vertex and face constraints are satisfied, there is no straight-line represen-
tation preserving these angles. The counterexample is easily generalized to
larger graphs and great-circle representations.

An angle assignment for an embedded graph is said to be (planar) re-
alizable, if there is an angle preserving (planar) straight-line or great-circle
representation. Let us summarize the above definitions and observations.

Lemma 5.3 (Angle Flow Lemma) An angle assignment x for a plane
graph G is locally consistent, if and only if x is a flow in A(G) or S(G),
respectively. Infinitely many plane graphs have locally consistent angle as-
signments that are not realizable.

Garg (1995) proves that it is NP-complete to decide whether a locally
consistent angle assignment is planar realizable, even if all angles are multi-
ples of 2π

k
for some integer k. Planar realizability can be tested efficiently for

special graph classes, e.g. series-parallel graphs (Garg, 1995) or trees (trivial).
Di Battista and Vismara (1996) give a compact characterization of planar
realizability for the following important special case. In particular, it shows
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the necessity of a non-linear condition that is not implied. This fact will be
the snag of our result on spherical angle flows in the next subsection.

Theorem 5.4 (Di Battista and Vismara 1996) Let G = (V,E, F ) be
a triconnected plane graph with designated external face f0 and triangular
internal faces, and let x be a flow in A(G). The corresponding angle assign-
ment gives rise to a planar straight-line representation that represents the
external face by a convex polygon, if and only if

(i) For all vertices v incident to f0

∑

f ∈ F − f0 incident to v

x(v,f) ≤ π

(ii) Ceva constraints: For all vertices v not incident to f0

∏

f ∈ F incident to v

sin x(v←f ,f)

sin x(v→f ,f)

= 1

where v←f and v→f are the other two vertices incident to the same face
f in clockwise order (see Figure 5.4).

This characterization is minimal in the sense that there is an infinite family
of admissible graphs with angle assignments that violate only condition (ii)
for a single vertex, but are not planar realizable.

Necessity of the first condition is trivial. We suggest calling the second
one Ceva constraint, since its necessity can be derived from Ceva’s theorem1

(Sigl, 1969, p. 121).

5.1.3 Angular Resolution

Angular resolution was defined in Section 4.1.2 to quantify a weakness of
the barycentric layout model. One might conjecture that, analogous to the
case of spatial resolution, tailor-made methods can substantially improve
angular resolution. Methods based on realizable angle graphs appear to
be natural candidates. However, maximizing angular resolution in planar
straight-line representations is NP-hard, even for triconnected planar graphs

1Ceva’s theorem is as follows: If points P , Q, and R are on the sides BC, CA, and
AB of a triangle ABC, respectively, then the lines AP , BQ, and CR meet in one point,
if and only if BP

PC ·
CQ
QA · ARRB = 1.
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Figure 5.4: The Ceva constraint:
∏

f ∈ F incident to v

sin x(v←f ,f)
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= 1

(Garg, 1996). Moreover, even the problem of proving tight bounds on the
angular resolution is largely open.

We give a brief overview of known results for planar straight-line rep-
resentations, and then extend a theorem of Malitz and Papakostas (1994)
on a lower bound for the angular resolution of triangulated plane graphs to
spherical layouts. While the angle assignments thus provided display very
appealing additional properties, we have to admit that there is no practical
use for them but to stress the gap between local consistency and realizability
of angle assignments.

A trivial upper bound on the angular resolution is 2π
∆(G)

. Formann et al.

(1993) show that every planar graph has a straight-line representation achiev-
ing this bound (up to a constant factor), but the resulting representation is
not necessarily planar.2 Lower bounds on the angular resolution of straight-
line representations preserving planarity are given by Malitz and Papakostas
(1994) and Garg and Tamassia (1994). While Malitz and Papakostas (1994)
prove an existential lower bound of Ω

(
1

α∆(G)

)
, for some α > 1, using the fact

that every triconnected planar graph has a coin graph representation (see
Figure 2.4(b)), Garg and Tamassia (1994) show that this bound is not tight.

2In fact, they also show that every graph has a (in general non-planar) straight-line

representation with angular resolution O
(

1
∆(G)2

)
.
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They also give the best known upper bound of O
(√

log ∆(G)
∆(G)3

)
for planar

straight-line representations of planar graphs.
Independent of the maximum vertex degree, every algorithm placing a

plane graph in a grid of size O(n)×O(n) yields a lower bound of Ω
(

1
n

)
(e.g.

Kant 1996; de Fraysseix et al. 1990; Schnyder 1990).
While it is an open problem whether a plane graph has a planar straight-

line representation with angular resolution polynomial in 1
∆(G)

, note that, in
contrast, it is possible to achieve asymptotically optimal angular resolution

Ω
(

1
∆(G)

)
in planar polyline representations (Kant, 1996), i.e. by allowing

edges to bend.
A plane graph is triangulated, if every face is incident to exactly three

vertices. Malitz and Papakostas (1994, p. 173) speculate “that Ω
(

1
∆(G)

)
. . .

is perhaps the true lower bound on angular resolution for triangulated planar
graphs” by proving the theorem below. Since every simple planar graph can
be triangulated such that the maximum vertex degree increases only by a
constant factor (see, e.g., Kant, 1993, Chapter 6), this would also imply the
asymptotically optimal lower bound for all simple plane graphs.

Theorem 5.5 (Malitz and Papakostas 1994) Every triangulated plane

graph has an angle flow with minimum angle Ω
(

1
∆(G)

)
.

Recall that the angles of a planar straight-line representation form a flow
in the corresponding angle network, while the converse is not necessarily
true – and even NP-complete to decide (Garg, 1995). Also recall that, by

now, an upper bound of O
(√

log ∆(G)
∆(G)3

)
for the angular resolution of planar

straight-line representations has been proven by Garg and Tamassia (1994).
In the remainder of this section we show that, along the lines of Malitz and

Papakostas (1994), one might just as well speculate about the existence of
very special planar great-circle representations of triconnected planar graphs.
In particular, they would match the trivial upper bound on the angular
resolution up to a constant factor. Note that every triangulated plane graph
is triconnected (Goldschmidt and Takvorian, 1994).

We first define the notion of an incidence graph to capture the relation
between a plane multigraph and its dual , i.e. the multigraph that has the
faces of G as vertices, and, for every edge in the original graph, an edge
connecting the vertices corresponding to the faces the edge is incident to.
Then we extend the proof of Malitz and Papakostas (1994) to spherical angle
flows of incidence graphs of triconnected planar graphs.

The associated incidence graph I(G) = (VI, EI , FI) of a plane graph G is
the plane graph which has a vertex for each vertex, face, and edge of G. Two
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Figure 5.5: A plane graph and its associated incidence graph

vertices of I(G) are adjacent, if the corresponding elements of G are incident,
and the embedding of I(G) refines the embedding of G (cf. Figure 5.5). Note
that the incidence graphs of G and its dual are isomorphic.

Incidence graphs represent embeddings of planar graphs. Moreover, a ge-
ometric embedding of I(G) gives rise to a simultaneous geometric embedding
of G and its dual. Obviously, the incidence graph of a simple triconnected
planar graph is simple, and every incidence graph is triangulated.

We conclude the introduction of incidence graphs with a lemma that will
be useful later on. Suppose we are given a plane graph G and a simple cycle
ζ in I(G). When ζ is traversed in clockwise direction, its right hand side is
called the interior, while its left hand side is called the exterior of ζ.

Lemma 5.6 Let G be a triconnected planar graph, and let ζ be a simple
cycle of length r in I(G). If r < 6, then the interior or the exterior of ζ
contains at most one vertex of I(G). This vertex then corresponds to an
edge in G.

�
Proof The removal of ζ disconnects the interior from the exterior.

Clearly, r > 2. If r = 3, then the interior or the exterior is empty. Assume
therefore that 4 ≤ r ≤ 5. Since no two vertices of the same type can be
adjacent, ζ contains at most two vertices corresponding to vertices, edges,
and faces in G, respectively. Since a planar graph is triconnected if and only
if its dual is, the interior or the exterior of ζ does not contain a vertex or
face of G. Finally verify that neither interior nor exterior can contain two
vertices corresponding to edges without containing a vertex corresponding to
a vertex or face of G. �
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Our aim now is to show the existence of locally consistent spherical angle
assignments for incidence graphs I(G) of triconnected planar graphs G, such

that every angle at some vertex v is in Θ
(

1
dG(v)

)
. Analogous to the construc-

tion in the original proof of Theorem 5.5, we investigate a flow problem in
the spherical angle network S(I(G)) of I(G).

Since we want to guarantee a minimum flow value for each arc in the
spherical angle network S(I(G)) = (W,A; b, l, u), parameters l(v, f) = αv ∈(

0, 2π
dI(G)(v)

]
are introduced for all (v, f) ∈ A. They express that every angle

at v shall have minimum value αv > 0. Recall that 2π
dI(G)(v)

is an upper bound

on the minimum angle at vertex v ∈ VI . With u(v, f) = π
2

for all (v, f) ∈ A
the capacities are well-defined because every vertex in the incidence graph
of a triconnected planar graph has degree at least 4, and hence 0 < αv ≤ π

2
.

See Figure 5.6.
To prove the existence of a flow in S(I(G)) for certain values of αv, v ∈ VI ,

and εf , f ∈ FI we need some more notation. For a subset of nodes S ⊆ W ,
let SV = S ∩ VI and SF = S ∩ FI be the subsets of nodes corresponding to
vertices and faces in I, respectively. Furthermore, let Fi(SV ) ⊆ FI be the
set of faces incident to exactly i, 0 ≤ i ≤ 3, vertices in SV . Any non-empty,
proper subset S ⊂ W of nodes in a network is called a cut. The margin m(S)
of a cut S ⊂ W is the capacity available for flow leaving S,

m(S) =
∑

a∈A∩(S×(W\S))

u(a)−
∑

a∈A∩((W\S)×S)

l(a)−
∑

w∈S
b(w)

A cut S is called tight, if SF = F2(SV ) ∪ F3(SV ) and the induced subgraph
I(G)[VI \ SV ] contains no isolated vertex, i.e. the boundary of the subgraph
of I(G) induced by SV consists of simple cycles that do not isolate single
vertices.

Lemma 5.7 Let G = (V,E, F ) be a triconnected plane graph and εf ≤
αv ≤ 2π

4+dI(G)(v)
for all f ∈ F and v ∈ V . For every cut S ⊂ W in S(I(G)),

there is a tight cut with smaller or equal margin.
�

Proof If a face f is removed from a cut S, the margin of the cut
changes by less than 3 · π

4
− (π + εf) < 0 if f ∈ F0(SV ), and by less than

π
2

+ 2 · π
4
− (π + εf) ≤ 0 if f ∈ F1(SV ). Likewise it does not increase if a face

f incident to at least two vertices in SV is added to S.
Assume therefore that SF = F2(SV )∪F3(SV ) and that there is an isolated

vertex v in I(G)[VI \ SV ]. Since all neighbors of v in I(G) must be in SV ,
every face incident to v is in F2(SV ). It follows from

∑
f incident to v αv < 2π

that m(S ∪ {v}) < m(S). �
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Figure 5.6: Spherical angle network for the incidence graph in Figure 5.5.
The bottom figure shows the network parameters for a face f with incident
vertices vv, vf , and ve of the incidence graph (corresponding to a vertex, face,
and edge, respectively, in the original graph)



100 CHAPTER 5. ANGLE FLOW LAYOUTS

For a tight cut S ⊆ W , we define its closure to be the subgraph of I(G)
IS of S consisting of all vertices and edges incident to at least one face in
F1(SV ) ∪ F2(SV ) ∪ F3(SV ).

Lemma 5.8 Let G be a plane graph and S ⊆ W be a tight cut in S(I(G)).

If the closure IS of S consist of biconnected components I (1)
S , . . . , I(k)

S , then

m(S) = m(S(1)) + · · ·+m(S(k))

where S(1), . . . , S(k) is the corresponding partition of S.
�

Proof Since S is tight, no cutvertex of IS is in S. Hence, the obvious
association of subsets S(i) ⊆ S to components I(i), i = 1, . . . , k, gives indeed
a partition, and no node in some S (i) corresponding to a vertex in I(G) is
incident to a node in some S(j), j 6= i, corresponding to a face. �

Theorem 5.9 Let G be a triconnected planar graph on three or more ver-
tices. There is a flow in S(I(G)), if αv = π

6·(dI(G)(v)−3)
for all v ∈ VI and

εf = 4π
|FI | for all f ∈ FI.�

Proof The planar embedding of a triconnected graph G is unique, so
that I(G) = (VI , EI, FI) and S(I(G)) = (W,A; b, l, u) are well-defined. By
the Ford/Fulkerson-Theorem and Lemmas 5.7 and 5.8, there is a flow in
S(I(G)), if the margin of every tight cut with biconnected closure is non-
negative. Let S ⊂ W be any tight cut with biconnected closure IS. Then,

m(S) =
∑

(v,f)∈A:

v∈SV ,f∈F1(SV )

π

2
−

∑

(v,f)∈A:

v∈VI\SV ,f∈F2(SV )

αv −
∑

v∈SV
2π +

∑

f∈SF
(π + εf)

To bound m(S) from below, we are interested in bounds on the number of
faces in F1(SV ) and F2(SV ). Let ∂IS be the subgraph of IS induced by
vertices not in S. We call ∂IS the boundary of IS. The boundary of a
biconnected closure IS is a planar graph with all vertices incident to a com-
mon face and without chords. Since S is tight, each connected component
of ∂IS has at least two vertices. The number of edges encountered when
walking around each component of ∂IS is a lower bound on the number of
faces in F1(SV ). An upper bound for the number of faces in F2(SV ) can be
determined from the degrees of the boundary vertices. These arguments are
still valid when closure IS is modified in the following way. Each compo-
nent of ∂IS is transformed into a simple cycle by duplicating edges that are
encountered twice when walking around its component, and then splitting
each vertex according to the number of simple boundary cycles it is incident
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IS I ′S

Figure 5.7: Transforming each component of ∂IS into a simple cycle by
duplicating edges and splitting vertices

to. We denote the modified graph with I ′S and its boundary with ∂I ′S (see
Figure 5.7).

Let ∂I ′S consist of k ≥ 1 simple cycles, and let r ≥ 2 be the number
of boundary edges of I ′S. Observe that I ′S can be triangulated by adding k
new vertices, one into each component of ∂I ′S , and connecting them to each
vertex of their respective cycle. The resulting triangular graph has |SV |+r+k
vertices and therefore 2 (|SV |+ r + k)− 4 faces. Moreover, F1(SV ) contains
at least r faces, while F2(SV ) contains no more than

∑
v∈V∂I′

S

(
dI(G)(v)− 3

)

faces, where V∂I′S is the set of boundary vertices. It follows that

m(S) ≥ r · π
2
−
∑

v∈V∂I′
S

(
dI(G)(v)− 3

)
αv − |SV | · 2π

+ [ 2 (|SV |+ r + k)− 4− 2r ] π +
∑

f∈SF
εf

= r · π
2
− r · π

6
+ 2(k − 2)π +

∑

f∈SF
εf

=
(r

3
+ 2k − 4

)
· π +

∑

f∈SF
εf

which is positive for k ≥ 2. Therefore we henceforth assume that k = 1,
i.e. I ′S has exactly one boundary cycle. Since we are done, if r ≥ 6, we also
assume that r < 6.

It follows from Lemma 5.6 that either SV or VI \VI′S contains at most one



102 CHAPTER 5. ANGLE FLOW LAYOUTS

vertex, where VI′S denotes the set of vertices of the modified closure. If SV
contains at most one vertex, say v ∈ VI, then S = {v}, since S is tight. In
this case, m(S) = dI(G)(v) · π

2
− 2π ≥ 0, since G is triconnected and therefore

dI(G)(v) ≥ 4.

Finally assume that VI \VI′S contains at most one vertex. Since G has at
least three vertices, I(G) has at least 8 vertices and 12 faces (see Figure 5.5).
On the other hand, there are at most 2r faces in FI \SF = F1(SV )∪F0(SV ),
which gives

m(S) ≥
(r

3
− 2
)
· π +

∑

f∈SF
εf

≥
(r

3
− 2
)
· π + (|FI| − 2r)

4π

|FI|

=

[
2−

(
8

|FI |
− 1

3

)
· r
]
· π

≥
(

2− r

3

)
· π > 0

�

Corollary 5.10 The incidence graph I(G) of any triconnected planar graph
G has a spherical angle assignment such that

• angles at v ∈ VI are in Ω
(

1
dI(G)(v)

)
and less than or equal to π

2

• angles at vertices corresponding to edges in G equal π
2

• the angles of each face sum up to π + 4π
|FI |

If such an angle assignment admits a great-circle representation on the
sphere, it is the refinement of simultaneous planar great-circle representations
of G and its dual with the following properties:

• the angular resolution of both G and its dual is asymptotically optimal

• primal and corresponding dual edges cross at right angles

• primal and dual faces are convex

• primal and dual faces have area proportional to their degree
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That’s clearly too much to hope for. Indeed it is easy to see that in general
an angle assignment resulting from a flow in S(I(G)) is not realizable.

Note however that Brightwell and Scheinerman (1993) prove the existence
of simultaneous planar straight-line and planar great-circle representations of
triconnected planar graphs and their duals such that primal and dual edges
cross at right angles. And finally, every planar straight-line representation
with convex faces (e.g. Tutte, 1963; Kant, 1996) yields a planar great-circle
representation with convex faces by gnomonic projection (with straightfor-
ward modification to ensure convexity of the originally unbounded face).

5.2 Orthogonal Representation

Up to now angle networks appear to be useless for layout computation, be-
cause they do not sufficiently characterize planar realizable angle assignments
of plane graphs. Even in the important special case of triconnected plane
graphs with triangular internal faces additional non-linear constraints were
necessary (Theorem 5.4).

The situation changes for the better if all angles are required to be non-
zero multiples of π

2
. At first sight, this may appear a rather arbitrary re-

striction, but representing edges by alternating sequences of horizontal and
vertical straight line segments as a way of reducing perceptual complexity in
network visualizations has a tradition in many technical applications.3 Such
polyline representations, in which every angle between two incident edge seg-
ments is a multiple of π

2
, are called orthogonal representations. They appear

to be particularly common for Entity-Relationship diagrams as in Figure 5.8.
Since it is possible to characterize realizable angle assignments for orthog-
onal representations by an augmented angle network, the remainder of this
chapter is devoted to orthogonal layout of both static and dynamic graphs.

A generic strategy for generating orthogonal representations is the Topo-
logy-Shape-Metrics approach mentioned in the introduction to this chapter.
In this section, we assume that the topology step has already been performed,
i.e. we are given a plane graph. It is shown that shapes of orthogonal repre-
sentations can be determined from flow in an augmented angle network.

In Section 5.2.1 we first describe a data structure that can be used to
store orthogonal shapes, and then give the details for an implementation of
the shape step minimizing the number of bends. For completeness, we sketch
in Section 5.2.2 an implementation of the subsequent metrics step assigning
lengths to the edge segments of an orthogonal shape.

3Recall our conjecture about the originators of Figure 3.2(a).
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Figure 5.8: Orthogonal representation of an Entity-Relationship diagram as
found in the Web (RevealNet, Inc.; http://www.revealnet.com/wpdbaerd.
htm)

5.2.1 Bend-Minimum Shape

Orthogonal layout with vertices represented by points corresponds to an em-
bedding in a grid, where vertices are placed at grid points and edges are
represented by sequences of grid lines. If these edge routes are required to
be non-overlapping, the class of admissible graphs is obviously restricted to
those with maximum vertex degree at most four. A graph with maximum
vertex degree at most k is called a k-graph. Since several generalizations
of the basic grid embedding approach to graphs of higher degree have been
devised (Tamassia et al., 1988; Fößmeier and Kaufmann, 1996; Klau and
Mutzel, 1998), we restrict our exposition to the 4-graph case and indicate
possible extensions only when appropriate.

Figure 5.9 depicts the three steps of the Topology-Shape-Metrics ap-
proach as applied to orthogonal representation. We here describe the bend
minimizing implementation of the shape step for plane 4-graphs given by
Tamassia (1987). It is extended to dynamic graphs in Section 5.3. Tamassia
uses a data structure H(G) to represent the orthogonal shape of a plane 4-
graph G = (V,E, F ) with designated external face f0. It consists of circular
lists

Hf = [ (e0, s0, a0), . . . , (edG(f)−1, sdG(f)−1, adG(f)−1) ]
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(a) plane 4-graph (“topology”)

(b) orthogonalization (“shape”)

(c) grid embedding (“metrics”)

Figure 5.9: The three steps of the Topology-Shape-Metrics approach for
orthogonal representations
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Figure 5.10: Orthogonal shape from Figure 5.9 with corresponding face lists

for each face f ∈ F . Each triple (ei, si, ai) of face list Hf consists of an
edge ei ∈ E, a string si ∈ {l, r}∗, and an angle ai ∈ {π2 , π, 3π

2
, 2π}. For

every internal face f , the sequence e0, . . . , edG(f)−1 corresponds to a clock-
wise traversal of the edges incident to f . The external face f0 is traversed
counterclockwise. Recall that each edge is encountered twice, possibly in the
same list. In si, l’s and r’s represent bends of ei with angles of 3π

2
(left turn)

and π
2

(right turn) radians towards f , respectively. Finally, ai is the angle
formed by ei and e

i+1 mod dG(f)
towards f . Speaking of orthogonal shape, we

always assume consistent face lists which do give the angles of an orthogonal
representation. Characterization of consistent face lists is straightforward
(Tamassia, 1987). An example is given in Figure 5.10.

The angle network defined in Section 5.1 cannot be used to describe or-
thogonal representations, because even though every bend can be considered
a vertex of degree two, the number of bends on an edge is not known before-
hand. Consequently, the face constraints are no longer suitable.

A bend of π
2

radians, corresponding to a right turn in a clockwise traversal
of the face, increases the sum of angles required in the facial polygon by π
(due to the additional vertex), while it increases the actual sum only by π

2
.

It therefore changes the balance of the face node by − π
2
. Likewise, a bend

of 3π
2

radians changes the balance by +π
2
. Since each bend of π

2
radians with

respect to one face is a bend of 3π
2

radians with respect to the face on the
other side of the edge, a bend causes an amount of π

2
radians to be transferred
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Figure 5.11: A bend in an orthogonal representation effectively shifts an
amount of π

2
from the sum of angles of one face to that of an adjacent face

from one face to an adjacent one without changing the total balance. See
Figure 5.11. Bends can hence conveniently be incorporated into an angle
network by adding new arcs between adjacent faces. Moreover, using the
common divisor π

2
, all parameters can be made integer, so that there always

is an integer solution to the flow problem, if any.

Definition 5.11 (Bend and angle network) Let G = (V,E, F ) be a
plane 4-graph with designated external face f0. The bend and angle network
B(G) = (W,A ∪B; b, l, u, c) of G is defined by

W = V ∪ F
A = {(v, f) ∈ V × F : v incident to f}
B = {(f, g) ∈ F × F : f adjacent to g}

b(v) = 4 for all v ∈ V
b(f) = −2 · (dG(f)− 2) for all f ∈ F − f0

b(f0) = −2 · (dG(f0) + 2)

l(v, f) = 1 for all (v, f) ∈ A
u(v, f) = 4 for all (v, f) ∈ A
c(v, f) = 0 for all (v, f) ∈ A

l(f, g) = 0 for all (f, g) ∈ B
u(f, g) = ∞ for all (f, g) ∈ B
c(f, g) = γ for all (f, g) ∈ B

for some γ ≥ 0. Elements of A and B have the appropriate multiplicity.
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Figure 5.12: Bend and angle network for the plane graph of Figure 5.9

A feasible flow in B(G) is called a bend and angle flow. Each unit of
flow represents an angle of π

2
which is distributed from a vertex to a face

and, possibly, to other faces until it is consumed in a face (cf. Figure 5.12).
Note that each time a flow unit passes an arc connecting two face nodes, it
produces a bend. It has been shown by experiment that diagrams are more
ergonomic if the number of bends is small (Purchase et al., 1996). The use
of arcs between adjacent faces is therefore discouraged by introducing the
cost function c : A ∪ B → � . To minimize the number of bends, it is then
sufficient to determine a bend and angle flow x minimizing the total cost

c(x)
def
=
∑

a∈A∪B c(a) · xa for some γ > 0.

Lemma 5.12 (Tamassia 1987) There is a one-to-one correspondence be-
tween flows in B(G) and orthogonal shapes of G (up to the ordering of bends
on each edge). Moreover, if γ = 1, the total cost of a bend and angle flow
equals the number of bends in the orthogonal shape.

Transformation of a bend and angle flow into an orthogonal shape is
straightforward. Given a bend and angle flow x, simply let se = lx(f,g)rx(g,f)

for an edge e in the face list of a face f , where g is the face on the opposite
side of e. Angles ai between consecutive edge ei and ei+1 mod dG(f) of a face
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f are set to x(v,f) · π2 , where (v, f) ∈ A is the arc entering f between these
two edges.

To minimize the number of bends in an orthogonal representation of a
plane 4-graph G it is hence sufficient to compute a minimum cost flow in
B(G). Using minimum cost augmenting paths, this can be carried out in
time O(n2 logn), where n is the number of vertices in G (Tamassia, 1987).
By cleverly combining two minimum cost flow algorithms, Garg and Tamassia
(1996) obtain the first subquadratic algorithm for bend minimization.

Theorem 5.13 (Garg and Tamassia 1995, 1996) The shape of an or-
thogonal representation preserving the embedding of a plane 4-graph with the
minimum number of bends can be determined in time O(n7/4 log n). It is
NP-hard to minimize the number of bends over all embeddings.

An algorithm minimizing the number of bends over all embeddings (with
running time exponential in the number of vertices) is given by Bertolazzi
et al. (1997). Di Battista et al. (1993b) show that the bend minimization
problem can be solved efficiently for planar 3-graphs, and Didimo and Liotta
(1998) fill in the gap with an algorithm for planar 4-graphs that is exponential
only in the number of vertices with degree four.

5.2.2 Compaction

The final step of the Topology-Shape-Metrics approach is performed by em-
bedding the orthogonal shape in a grid. The simple example in Figure 5.13
indicates why grid embeddings of the same orthogonal shape can look quite
different, even if planarity is preserved. Besides planarity, the following are
desirable features of a grid embedding (where distances are measured in terms
of grid line segments):

• short total and maximum edge length

• small width, height, and area

• good aspect ratio

The problem of computing a grid embedding, i.e. integer coordinates for
vertices and bends, while preserving planarity and shape is therefore called
compaction. Recently, Patrignani (1999) showed that total edge length min-
imization, maximum edge length minimization, and area minimization are
NP-hard problems for general shapes, but Di Battista et al. (1999, Sec-
tion 5.4) show that a grid embedding minimizing the total edge length, width,
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Figure 5.13: Three grid embeddings of the orthogonal shape from Figure 5.9

height, and area can be computed efficiently if the orthogonal shape repre-
sents every face as a rectangle. In this section, we indicate how an algorithm
of Tamassia (1987) refines an orthogonal shape to have rectangular faces,
and outline the optimizing compaction algorithm applicable to such shapes.

Tamassia (1987) refines orthogonal shapes to have rectangular faces by
adding a number of dummy vertices and edges. The refined orthogonal shape
is then embedded in the grid, and a grid embedding of the original graph is
obtained simply by omitting all dummy vertices and edges.

Given a plane 4-graph G and an orthogonal shape H(G), a rectangular
refinement of H(G) is an orthogonal shape H(G � ) of a graph G � that has a
dummy vertex for each bend of H(G), and some more dummy vertices and
edges subdividing each face into rectangles. The restriction of H(G � ) to the
elements of G must yield an orthogonal shape for G. See Figure 5.14.

Tamassia’s algorithm now traverses each internal face of G � in counter-
clockwise direction, connecting the vertex of each right turn with a dummy
vertex subdiving the first edge that can oppose this turn. The external face

Figure 5.14: Rectangular refinement of the orthogonal shape from Figure 5.9
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Figure 5.15: Rectangular refinement of the orthogonal shape from Figure 5.9
obtained from the algorithm of Tamassia (1987)

is traversed clockwise, and an enclosing rectangle of dummy vertices and
edges is used to ensure that every right turn is matched with an edge. See
Figure 5.15 and refer to Di Battista et al. (1999, Section 5.4.2) for details.

Given an orthogonal shape with rectangular faces for the plane 4-graph
G � we want to assign positive integer lengths to the edges. Feasible solutions
are easily characterized.

Lemma 5.14 A length assignment for the edges of an orthogonal shape with
rectangular faces is consistent, if and only if, for every face, opposite sides
have the same length.

The edges of G � can easily be classified into horizontal and vertical in
one of two ways. By the above lemma, edge lengths can be determined in-
dependently for each class. Moreover, since the condition easily translates
into flow conservation constraints, the total edge length minimization prob-
lem can be stated in terms of a minimum cost flow problem. Construction
of the corresponding networks is shown in Figure 5.16. Using the minimum
cost flow algorithm of Garg and Tamassia (1996), the following corollary is
obtained.4

4Since there always is a flow in these compaction networks, this ultimately proves that
every angle assignment corresponding to a bend and angle flow is planar realizable. It
is an instructive exercise to relate the resulting grid embedding to the Ceva constraints
introduced in Theorem 5.4.
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Figure 5.16: Compaction networks for horizontal and vertical edge segments.
Except for arcs (t, s), which have lower capacity and cost zero, every arc has
lower capacity one, infinite upper capacity and unit cost. Every node has
demand/supply zero. Each unit of flow on an arc induces one grid segment
for the edge crossed. Then, the sum of the total cost of both flows equals the
total induced edge length
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Figure 5.17: Optimal compactions of the rectangular refinements from Fig-
ures 5.14 (left) and 5.15 (right)

Corollary 5.15 Given a plane 4-graph G � and an orthogonal shape of G �
with rectangular faces, a shape preserving grid embedding with the mini-
mum height, width, area, and total edge length can be computed in time
O
(
n7/4 log n

)
.

Tamassia (1987) cites a faster algorithm of Hsueh (1979, pp. 26–28/46–
52) that is based on longest path computations in the dual graphs of the
above compaction networks. However, this algorithm does not minimize the
total edge length. A detailed description is given in Di Battista et al. (1999,
Section 5.4.1).

Lemma 5.16 Given a plane 4-graph G � and an orthogonal shape of G �
with rectangular faces, a shape preserving grid embedding with the minimum
height, width, and area can be computed in linear time.

Figure 5.17 illustrates, why the total edge length of the resulting grid
embedding of G is not necessarily minimum, even when the optimizing algo-
rithm of Corollary 5.15 is used. It remains an open challenge to devise better
rectangularization strategies.
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5.3 Dynamic Orthogonal Shape

Orthogonal representations are popular especially for graphs in technical ap-
plications like network plans, Entity-Relationship diagrams, program depen-
dencies, or circuit schematics. These settings often require graphs to be
edited interactively, as in CASE tools or schema editors. Just like anima-
tion (see Section 3.3), user interaction is a natural source for dynamic graph
layout problems.

As mentioned in Section 2.2, several approaches to dynamic layout have
been taken (Cohen et al., 1992; Böhringer and Paulisch, 1990; North, 1996a).
In the realm of orthogonal representations, research has mostly focused on in-
cremental updates, in which only creation of new vertices and edges is allowed
(Papakostas and Tollis, 1996; Biedl and Kaufmann, 1997). In particular, Pa-
pakostas and Tollis (1996) discuss several scenarios with respect to the kind
of modifications allowed in transition from one layout to the next: Draw-
From-Scratch, Full-Control , Relative-Coordinates, and No-Change. Draw-
From-Scratch and No-Change are at opposite ends of the trade-off between
(static) layout quality and the attempt to preserve a user’s mental map.
In the Full-Control scenario, the user is allowed to request many features by
means of constraints, while the main concern in the Relative-Coordinates sce-
nario is to maintain the relative ordering of vertex positions along coordinate
axes.

A fully dynamic system for orthogonal layout of dynamic 4-graphs is
InteractiveGiotto (Bridgeman et al., 1997). It is based on Giotto
(Tamassia et al., 1988), an implementation of the Topology-Shape-Metrics
approach using the bend and angle network to determine the shape of a
layout. InteractiveGiotto planarizes the graph according to the drawing
currently visible by introducing new vertices for crossings and bends.5 In
the associated bend and angle network capacities of arcs stemming from
unmodified portions of the graph are altered in order to fix the flow at its
previous value. Hence, InteractiveGiotto does not change the shape
of these parts of the graph, whereas new or modified portions are laid out
bend-minimally. Note that the number of bends is never decreased, except
when edges are deleted from the graph.

Here, we apply the Bayesian framework of Section 2.2 to obtain a dynamic
model which forms an explicit and controllable compromise between layout
stability and layout quality, i.e. between the modification of shape and the
total number of bends. Our approach is described formally in the next sec-
tion. The subsequent section shows how to determine optimal layouts in this

5The latter to maintain the ordering of bends on each edge.
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Figure 5.18: Two bend minimum layouts of a plane 4-graph

model efficiently. Interestingly, the corresponding optimization problem can
still be solved by network flow techniques. Since an implementation of our
model only realizes the shape step, it can be incorporated into any system
for dynamic layout using the Topology-Shape-Metrics approach. Some issues
related to integration in interactive systems are touched in Section 5.3.3.

5.3.1 Bend Number vs. Shape Modification

It was shown in Section 5.2.1 that bend and angle flows are well suited
for bend minimization in orthogonal representations of static graphs. The
main difficulty in extending the Topology-Shape-Metrics approach to dy-
namic graphs is rooted in the observation that two bend minimum layouts
even of the same graph can have very different shapes (see Figure 5.18), not
to mention pairs of layouts for graphs that are only similar. In an inter-
active graph layout tool, a Draw-From-Scratch scenario may thus result in
consecutive drawings that do not seem related. The user’s mental map is not
retained at all.

On the other hand, a No-Change scenario results in drawings that do not
satisfy the quality criterion that was the focus of the previous section, namely
small bend numbers. Figure 5.19 gives an example. Moreover, an interactive
application does not allow to maintain restrictive invariants necessary to
preserve orthogonality and planarity throughout.

The other two scenarios of Papakostas and Tollis (1996) are difficult to
adapt to our setting, because they are based on an actual grid embedding
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Figure 5.19: In the No-Change scenario, if feasible at all, modifications often
result in orthogonal shapes with an unnecessary high number of bends. Here,
creation and bend minimal routing of a new edge is followed by deletion of
an old one

rather than the shape of an orthogonal representation. Even though Inter-
activeGiotto follows a No-Change scenario with respect to the orthogonal
shape, the resulting layouts at least partially resemble a Relative-Coordinates
scenario due to shifts caused by compaction.

The major drawback of InteractiveGiotto is the one common to any
No-Change scenario. The quality of a layout is never actively improved, i.e.
the number of bends is never decreased by the layout algorithm, but only
by deletions. To avoid occasional recomputations of the whole layout as a
work-around, possibly altering the shape substantially, we propose a different
strategy based on the dynamic layout framework presented in Section 2.2.
Just as in the case of dynamic straight-line embeddings (Section 3.3.1), we
integrate the grade of change in values assigned to layout elements into the
objective function.

According to the Bayesian framework of Section 2.2 stability can be in-
corporated into a dynamic model as a local criterion measuring the deviation
from target values generated from the previous layout. In Section 3.3.1, the
dependencies between consecutive layouts are modeled by target positions
of vertices that are present in the layout prior to modification. The layout
elements of a bend and angle network are the flow variables xa, a ∈ A ∪ B.
We therefore assume that a set Λ ⊆ A ∪ B of arcs is given, for which target
values are derived from the shape of a layout of the previous graph. Possible
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ways of generating such values are outlined in the next section.
We hence assume that we are given a plane 4-graph G = (V,E, F ) with

its associated bend and angle network B(G) and a vector y of target values
for a subset Λ of arcs. The energy function of the static bend-minimum
shape model is the cost U(x) =

∑
(f,g)∈B γ ·x(f,g) of flow across face-face arcs

in B(G). By introducing stability potentials

U{a}(x | ya) = Deviation (xa, ya | ρa )
def
= ρa · |xa − ya|

measuring the deviation from target values for all a ∈ Λ, we obtain a dynamic
orthogonal shape model

U(x | y) = γ ·
∑

(f,g)∈B
x(f,g) + α ·

∑

(v,f)∈Λ∩A
|x(v,f) − y(v,f)|+ β ·

∑

(f,g)∈Λ∩B
|x(f,g) − y(f,g)|

Parameters α, β, and γ enable arbitrary relative weighting of all three criteria
with integer values. Though this model was found independently, it can
be considered a relaxation of the model underlying InteractiveGiotto.
Instead of constraining some arcs to carry an amount of flow given by the
shape of the previous layout, the absolute differences are to be minimized.
The advantage of this approach is that the number of bends can be reduced, if
the improvement outweights the number of changes to the orthogonal shape.

5.3.2 Compromise Optimization

Even though the dynamic orthogonal model is only piecewise linear, optimal
shape can still be obtained using network flow techniques. The basic idea is
to assume that each arc in the bend and angle network carries the targeted
amount of flow, and to modify capacities as well as demand and supply
values accordingly. Each unit of flow in the resulting network is charged its
contribution to the objective function derived above. The remainder of this
subsection gives the details of this construction.

Given any flow network N = (W,A; b, l, u, c) and a flow y, the residual
network (with respect to a flow y), Ny = (W,A ∪ Ā; by, ly, uy, cy), is con-
structed by adding reduction arcs ā for all a ∈ A, where ā connects the same
nodes as a, but is oriented in the opposite direction. The set of all reduction
arcs is denoted by Ā. Furthermore, we define

• residual supplies/demands by(w) = 0

• residual capacities ly(a) = ly(ā) = 0
uy(a) =u(a)− ya
uy(ā) = ya − l(a)
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• residual costs cy(a) = c(a)
cy(ā) =−c(a)

for all w ∈ W , a ∈ A. Every flow z in Ny yields a circulation χ(z) in N by
setting

χ(z)a = za − zā
Clearly, χ(z) gives rise to a flow x = y + χ(z) in N . This standard model
for feasible altercation of flow (see, e.g., Ahuja et al., 1993) is modified in
two aspects to obtain a network formulation for the optimization problem
associated with our dynamic orthogonal shape model.

In principle, we have to account for both the facts that targets for flow
values are given only for a subset of arcs, and that these values need not
satisfy the capacity constraints. Without loss of generality we can however
assume that all target values do satisfy the capacity constraints (otherwise
replace ya by min{ u(a),max{l(a), ya} }). We say that ya is a target flow
value for arc a to indicate that it satisfies the capacity constraints. For a
subset Λ ⊆ A we generalize the above definition to the residual network (with
respect to y defined on Λ), Ny = (W,A ∪ Ā; by, ly, uy, cy), where

by(w) = b(w) +
∑

(w′,w)∈Λ

y(w′,w) −
∑

(w,w′)∈Λ

y(w,w′)

for all w ∈ W , and

ly(a) =

{
0 if a ∈ Λ
l(a) otherwise

ly(ā) = 0

uy(a) =

{
u(a)− ya if a ∈ Λ
u(a) otherwise

uy(ā) =

{
ya − l(a) if a ∈ Λ
0 otherwise

cy(a) = c(a)

cy(ā) = −c(a)

for all a ∈ A. Note that, although χ(z) of some flow z in Ny is no longer a
circulation in N , we still obtain a flow x in N by setting

xa =

{
ya + χa(z) if a ∈ Λ

χa(z) otherwise
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For ease of notation we also write x = y + χ(z) to denote the flow thus
obtained. The above case distinctions may seem overly complicated, because
the same values for capacities, demands and supplies, and costs, are obtained
by introducing new target values ya = 0 for all a ∈ A \Λ. We will see below,
however, that there is a substantial difference between a target value of 0
and no target value at all.

The second modification is necessary because the dynamic orthogonal
model, in addition to the usual cost of bends, penalizes deviation from target
values. The flow values should deviate from their target flow values only if
a notable improvement of the bend minimization cost function is achieved.
Therefore, we render altercation of the assumed flow values more difficult by
adding penalties ρa, a ∈ Λ, to residual costs. The resulting network is called
the penalized residual network, N ρ

y = (W,A ∪ Ā; by, ly, uy, c
ρ
y), where

cρy(a) =

{
cy(a) + ρa if a ∈ Λ
cy(a) otherwise

cρy(ā) =

{
cy(ā) + ρa if a ∈ Λ
cy(ā) otherwise

Penalties ρa represent the extra cost of each unit of flow deviating from the
targeted amount along arcs a ∈ Λ. It therefore makes a difference, whether
an arc has a target value of 0, or no target value at all (provided the penalty
does not equal zero).

The following theorem summarizes the purpose of this construction. A
flow z in the residual is called proper, if for all a ∈ A at least one of za and
zā is zero.

Theorem 5.17 Let y be a vector of target flow values for a set Λ ⊆ A of
arcs in a network N . The total cost of a proper flow z in N ρ

y equals

∑

a∈A
c(a) · xa +

∑

a∈Λ

ρa · |xa − ya| −
∑

a∈Λ

c(a) · ya

where x = y + χ(z) is a flow in N .
�

Proof We first show that x = y + χ(z) is a flow in N . To see that x
satisfies the capacity constraints, first note that za, zā ≥ 0 for all a ∈ A, since
ly(a), ly(ā) ≥ 0. If a ∈ Λ, then

l(a) = ya − uy(ā) ≤ ya − zā ≤ xa ≤ ya + za ≤ ya + uy(a) = u(a)

If a 6∈ Λ, then ly(ā) = uy(ā) = 0 implies zā = 0, and consequently

l(a) = ly(a) ≤ za = xa = za ≤ uy(a) = u(a)
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Since z is a flow in Ny, we also have

b(w) = by(w)−
∑

(w′,w)∈Λ

y(w′,w) +
∑

(w,w′)∈Λ

y(w,w′)

=
∑

(w,w′)∈A
z(w,w′) −

∑

(w′,w)∈A
z(w′,w) −

∑

(w,w′)∈A
z(w,w′)

+
∑

(w′,w)∈A
z(w′,w) −

∑

(w′,w)∈Λ

y(w′,w) +
∑

(w,w′)∈Λ

y(w,w′)

=
∑

(w,w′)6∈Λ

χ(w,w′)(z)−
∑

(w′,w)6∈Λ

χ(w′,w)(z)

+
∑

(w,w′)∈Λ

(
y(w,w′) + χ(w,w′)(z)

)
−

∑

(w′,w)∈Λ

(
y(w′,w) + χ(w′,w)(z)

)

=
∑

(w,w′)∈A
x(w,w′) −

∑

(w′,w)∈A
x(w′,w)

for all w ∈ W . Therefore, x is indeed a flow in N .
Since for all a ∈ A at least one of za and zā is zero, the cost of z in N ρ

y is

∑

a∈A

(
cρy(a) · za + cρy(ā) · zā

)

=
∑

a∈A
c(a) · (za − zā) +

∑

a∈Λ

ρa · (za + zā)

=
∑

a6∈Λ

c(a) · xa +
∑

a∈Λ

c(a) · (xa − ya)

+
∑

a∈Λ : zā=0

ρa · za +
∑

a∈Λ : za=0

ρa · zā

=
∑

a6∈Λ

c(a) · xa +
∑

a∈Λ

c(a) · (xa − ya)

+
∑

a∈Λ : zā=0

ρa · (xa − ya) +
∑

a∈Λ : za=0

ρa · (ya − xa)

=
∑

a∈A
c(a) · xa −

∑

a∈Λ

c(a) · ya +
∑

a∈Λ

ρa · |xa − ya|

�

Application to our dynamic orthogonal shape model is straightforward.
Simply let the weights of the stability potentials serve as penalties (cf. Fig-
ure 5.20).
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Figure 5.20: Reduction arcs in the residual bend and angle network with
penalties from the dynamic orthogonal shape model

Corollary 5.18 Given a plane 4-graph G and a vector y of target flow
values defined on Λ, let ρ = (ρa)a∈Λ be defined by

ρa =

{
α if a ∈ Λ ∩ (V × F )
β if a ∈ Λ ∩ (F × F )

Then the cost of a proper flow z in Bρy(G) equals U(y+χ(z) | y)−γ · ∑
a∈Λ∩B

ya.

Using the minimum cost flow algorithm of Garg and Tamassia (1996) and
the linear time compaction algorithm of Hsueh (1979), we can conclude that
the dynamic orthogonal shape problem can be solved in subquadratic time
for reasonable target flow values (i.e. implying a number of bends that is
linear in the number of vertices).

Corollary 5.19 Given a plane 4-graph G and a vector y of target flow
values defined on Λ, an optimal layout according to the dynamic orthogonal
shape model can be computed in time O

(
n(n+ k)3/4 logn + k

)
, where n is

the number of vertices in G, and k =
∑

a∈Λ∩B
ya.

It should go without notice that the concept of target values can be used in
any flow based layout model. In particular, extensions to dynamic layout in
the Kandinsky (Fößmeier and Kaufmann, 1996) and QuasiOrthogonal
(Klau and Mutzel, 1998) models can be obtained along these lines.

Finally note that Fößmeier and Kaufmann (1997) use integer linear pro-
gram formulations for advanced orthogonal shape models in order to avoid
more complex network constructions. With the straightforward linear pro-
gramming formulation of the penalized residual, any such model can be ex-
tended to dynamic layout by using target values. For each absolute difference
|xa−ya| in the objective function, new variables za and zā represent the pos-
itive and negative difference, respectively. With the additional constraints
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za, zā ≥ 0 and xa − ya = za − zā, we can therefore substitute |xa − ya| by
za + zā to obtain an equivalent linear program.

5.3.3 Interactive Systems

Dynamic orthogonal shape computation is but one step in interactive ortho-
gonal graph layout following the Topology-Shape-Metrics approach. In this
subsection, we briefly discuss possible ways of integration in a fully interactive
environment.

Topology. At first sight, the topology step seems trivial, because an em-
bedding is already given by the user of the interactive system. However, it
cannot be assumed that it is planar at all times. To apply the network ap-
proach for angle assignment, the graph must hence be planarized. A common
approach used in static settings is to compute a maximal planar subgraph
and re-insert deleted edges into the final layout. This and related approaches
are discussed by Jünger and Mutzel (1996). In an interactive tool, the planar
subgraph approach cannot be expected to work particularly well, because it
gives away control over the embedding, and hence does not preserve the user’s
mental map. A simple strategy that seems to be better suited for interactive
environments is an online refinement of the embedded graph shown on the
screen into a planar graph preserving the embedding. This is easily done by
replacing each crossing by a new vertex of degree four and adding a vertex
for each bend of the previous layout or drawn by the user (to maintain the
order of left and right turns in the bend and angle network). See Figure 5.21.

Shape. Keeping track of those vertices and edges that have been modified
after the most recent layout computation allows for a variety of target value
generation schemes in the subsequent shape step. For each arc in the bend
and angle network we can specify

• a fixed flow value (as in InteractiveGiotto)

• a target flow value together with a penalty for deviation (as described
in the previous subsection)

• nothing at all (indicating that we do not care about shape modification)

A reasonable convention might be to

• let the user explicitly mark angles and bends that are not allowed to
change
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Figure 5.21: Planarization of an embedded graph. Compare with Fig-
ure 5.24(a) and observe that the order of edge segments at dummy vertices
created by crossing edges prevents knock-knees in the orthogonal shape

• use angles and bends of unmodified portions of the graph from the
previous layout as target values

• layout modified parts of the graph according to the bend-minimum
model

Examples with target flow values for all angles and bends are given in Fig-
ures 5.22 and 5.23, while different schemes are compared in Figure 5.24, one
of which is also applied in Figure 5.26.

Using a penalized residual network, the resulting energy minimization
problem can be solved efficiently. Due to the fact that dummy vertices re-
place bends in the online planarization, we have to be a little more careful
with the definition of the network. Figure 5.25 indicates the modification
necessary to make sure that changing angles at these dummy vertices really
has the effect of changing bends. Moreover, when a graph is not changed
drastically between two layout computations, only few demand/supply val-
ues in the residual are different from zero. It can therefore be expected
that the minimum cost flow problem is solved much faster than stated in
Theorem 5.19 by computing (a small number of) augmenting paths.

To cope with vertices of degree higher than four, several variants based on
the replacement of such vertices by expansion cycles exist (Tamassia et al.,
1988; Klau and Mutzel, 1998; Di Battista et al., 1999, Section 5.8). An expan-
sion cycle is a cycle of degree three vertices, each one connected to one of the
former neighbors of the replaced vertex, while their cyclic order respects the
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Figure 5.22: Orthogonalization of a hand-drawn sketch. All angles and bends
in the drawing on the left are rounded to the next multiple of π

2
and used as

target flow values for the dynamic model (α = β = γ = 1)
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Figure 5.23: Orthogonalization of a spring embedder layout
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(a) The graph of Figure 5.22
with modifications

(b) Bias towards stability by
generating target flow values for
the whole graph (α = β = γ =
1; 18 bends)

(c) No target values for mod-
ified parts (α = β = γ = 1;
13 bends)

(d) No target flow values (α = β =
0, γ = 1; 10 bends)

Figure 5.24: Selected strategies of target flow value generation
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Figure 5.25: Network modification at bend replacing dummy vertices. These
nodes have zero demand/supply and do not contribute to the demand values
of incident faces

embedding. If all arcs in the bend and angle network corresponding to cycle
edges are constrained to carry zero flow, the shape of each substituted cycle
is guaranteed to be a rectangle, Vertices of the original graph can then be
represented by rectangles (Tamassia et al., 1988), or placed inside the rect-
angle (Klau and Mutzel, 1998). Quite differently, the Kandinsky model
allows zero degree angles between incident edges (Fößmeier and Kaufmann,
1996). The corresponding edge segments can thus run in parallel on a finer
grid. Since zero degree angles are represented by further augmentation of the
bend and angle network, all these approaches can be made dynamic using
target values. However, finding intuitive schemes for target value generation
becomes more difficult.

Metrics. Finally, a grid embedding of the orthogonal shape is to be de-
termined. Since shape appears to dominate the impression of an orthogonal
layout, static compaction as described in Section 5.2.2 may suffice.6

If the metrics step is based on the orthogonal shape alone, one occasion-
ally encounters a rotation problem already mentioned by Bridgeman et al.
(1997). Since there are two ways of classifying edges into vertical and hori-
zontal, successive orthogonal representations may be rotated by 90 degrees.
We suggest to use a majority vote of edge orientations from the represen-
tation visible prior to layout computation. Stability can be improved even
further by using target values for length assignment, too.

6The reason for obvious detours in some of our examples is that we used an implemen-
tation of compaction based on rectangularization and the linear time algorithm of Hsueh
(1979) (available in the AGD library, Mutzel et al., 1998).
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Figure 5.26: A sketched grid with subsequently added edges. Target flow
values are generated to preserve the sketch, while edges added later are laid
out bend minimally
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Chapter 6

Conclusion

We broke down layout of graph visualizations and presented several new
layout models and algorithms.

First, graph layout was embedded in the context of graphical presenta-
tion. For effective graphical presentation, substance must be conveyed in
an easily comprehensible way. Because of the complex interdependencies in-
volved in mapping structural to spatial relations, layout is the most challeng-
ing problem in the visualization of graphs. Grounded on formal descriptions
of diagrams in general, we developed a uniform framework for graph layout,
including layout of dynamic graphs. In this framework layout is considered
an optimization problem with an objective function that separates the in-
terdependencies into locally defined criteria of layout quality. A Bayesian
argument then showed that dynamic graph layout can be considered a spe-
cial case of static layout, where stability between layouts is modeled, e.g., by
local criteria measuring the deviation from target values.

At the cost of efficiency – a straightforward reduction shows that, in gen-
eral, it is NP-hard to obtain optimal layouts – the framework lends itself
to generic implementation and therefore supports rapid prototyping of lay-
out models. Note that satisfactory models can later be refined to become
amenable to more efficient algorithms. Prototyping of layout models was
exercised in Chapter 3 by means of case studies on graphs from different
domains of application. The three case studies do not merely serve as proof
of concept, but are interesting in their own right:

• For social networks we developed the first layout model that explicitly
combines readability criteria with exact representation of substantive
variables. Social networks pose many substantive problems, both quan-
titative and qualitative. It is our hope that our approach will initiate
further research on the effective integration of clarity and substance.

129
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• The application of our framework to an animation problem seamlessly
extended static spring models to dynamic graphs. Since running time
was dominated by viewpoint computation and rendering, we felt no
need for faster layout algorithms. For interactive applications, however,
this might well be an issue.

• In the case of time table graphs, we encountered some unintented
beauty, because European public transportation networks represent
some underlying geographical features amazingly well. Technically, the
derived layout model appears to be the first force directed edge rout-
ing strategy. A better suited energy minimization method for the final
model led to substantial speed up in layout computation.

As an example of energy based models that can be optimized efficiently,
barycentric layout models were studied in Chapter 4. Using a construction
of Eades and Garvan (1996), we gave simple proofs for the exponentially bad
spatial and angular worst case resolution of these models. Since angles in
barycentric layouts are an effect rather than an integral part of the model,
this result bridges the gap to layouts methods that determine angles in the
first place.

It is known that network flows capture some properties of angles in pla-
nar straight-line representations, but are insufficient to actually characterize
them, at least in general. The latter was emphasized by proving the existence
of locally consistent angle assignments for planar great-circle representations
of triconnected planar graphs that display many desirable properties, includ-
ing an optimal lower bound on the angular resolution, but are not realizable.

Angle networks do suffice, however, in the important special case that all
angles are required to be multiples of π

2
. The application of our framework

for dynamic graph layout to the bend-minimum orthogonal shape approach
of Tamassia (1987) led to the concept of target flow values. They were
used to formulate various compromises between the number of bends and
layout shape modifications in order to improve interactive orthogonal layout
systems, but are likely to be useful in other network flow applications as well.

All proposed layout models have been implemented, and a number of
example visualizations were shown.

One result of any learning experience is the ability to articulate questions.
Consequently, new open problems arise from many topics touched in this the-
sis. Instead of an enumeration of selected problems, three general directions
of further research that we consider relevant are given:
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• For sure, interactive systems will become even more important. Similar
to word processors with online formatting capabilities, dynamic graph
layout could transparently support users in editing relational structures
(e.g. in visual programming or system design). Layout in such systems
has to be fast and flexible, implying the need for layout models with
meaningful options as well as efficient algorithms. We used target val-
ues for stability in two otherwise quite different layout models. Do
they yield extensions of other static models, or are there other useful
instantiations of the Bayesian framework?

• Recently initiated work on difference metrics (Bridgeman and Tamas-
sia, 1998) may serve as a basis for experimental studies evaluating dif-
ferent approaches for dynamic layout. But assessment of the effective-
ness of graphical presentations is a pressing topic for graph drawing in
general. While it is known that layout does have a strong effect on the
ease and correctness of understanding structural information, few re-
sults indicate how layout can actively enhance understanding. The only
experiments we know of suggest that spatial proximity causes viewers
to group vertices, even if these do not form a dense subgraph (McGrath
et al., 1998). Besides it being plausible, we have no further evidence,
for instance, that matching structural centrality in social networks with
its geometric intuition is really effective.

• Syntactic (like centrality) and semantic (like non-structural grouping)
substance obviously varies across applications. The linkage between
clarity and domain specific substance will undoubtedly be the richest
source of new graph drawing problems.
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Fröhlich, M. and Werner, M. (1995). Demonstration of the interactive graph
visualization system daVinci. In Tamassia and Tollis (1995), pages 266–
269. Project home page at http://www.informatik.uni-bremen.de/

~inform/forschung/daVinci/daVinci.h%tml.



BIBLIOGRAPHY 139

Fruchterman, T. M. and Reingold, E. M. (1991). Graph-drawing by force-
directed placement. Software—Practice and Experience, 21(11):1129–1164.

Gansner, E. R. and North, S. C. (1998). Improved force-directed layouts. In
Whitesides (1998), pages 364–373.

Garey, M. R. and Johnson, D. S. (1991). Computers and Intractability: A
Guide to the Theory of NP–Completeness. W.H. Freeman & Co.

Garg, A. (1995). On drawing angle graphs. In Tamassia and Tollis (1995),
pages 84–95.

Garg, A. (1996). Where to Draw the Line. PhD thesis, Brown University.

Garg, A. and Tamassia, R. (1994). Planar drawings and angular resolution:
Algorithms and bounds. In van Leeuwen, J., editor, Proceedings of the 2nd
European Symposium on Algorithms (ESA ’94), volume 855 of Lecture
Notes in Computer Science, pages 12–23. Springer.

Garg, A. and Tamassia, R. (1995). On the complexity of upward and recti-
linear planarity testing. In Tamassia and Tollis (1995), pages 286–297.

Garg, A. and Tamassia, R. (1996). A new minimum cost flow algorithm with
applications to graph drawing. In North (1996b), pages 201–216.

Garland, K. (1994). Mr. Beck’s Underground Map. Capital Transport Pub-
lishers.

Garvey, R. B. (1998). Multidimensional outlines – WordgraphsTM. In White-
sides (1998), pages 448–449.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE Transactions on Pattern
Matching and Machine Intelligence, 6(6):721–741.

Geman, S., Geman, D., Graffigne, C., and Dong, P. (1990). Boundary detec-
tion by constrained optimization. IEEE Transactions on Pattern Matching
and Machine Intelligence, 12:609–628.

Goldschmidt, O. and Takvorian, A. (1994). An efficient graph planarization
two-phase heuristic. NETWORKS, 24:69–73.

Griffeath, D. (1976). Introduction to random fields. In Kemeny, J. G., Snell,
J. L., and Knapp, A. W., editors, Denumerable Markov Chains, chapter 12,
pages 425–458. Springer.



140 BIBLIOGRAPHY

Guyon, X. (1995). Random Fields on a Network. Springer.

Hage, P. and Harary, F. (1995). Eccentricity and centrality in networks.
Social Networks, 17:57–63.

Himsolt, M. (1996). The Graphlet system. In North (1996b), pages 233–
240. Project home page at http://www.fmi.uni-passau.de/Graphlet/.

Hsueh, M.-Y. (1979). Symbolic Layout and Compaction of Integrated Circuits.
PhD thesis, University of California, Berkeley.

Hutschenreuther, H. (1967). Einfacher Beweis des Matrix-Gerüst-Satzes der
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dynamic, 16
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logical update, 16
partial, 13
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layout algorithms, 26, 28, 69
generic, 23
gradient methods, 21n, 22
iterative methods, 19–23, 26
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bend-minimum, 104–109, 123
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dynamic orthogonal, 117, 121
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generic, 23
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prototyping, 19, 25, 32, 41, 68
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static web links, 51
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length assignment, 88, 111, 126
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linear programs, 121
Linux, 57n
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loss function, 17

magnetic field, 27, 53
margin, 98
Markov property, 20n
Markov random field, 20n
matrix tree theorem, 82
MAX CUT, SIMPLE, 19
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maximum pseudo-likelihood, 68
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metrics, 126
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MultiNet, 40
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network

angle, 90, 107
bend and angle, 107, 114
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flow, 90
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policy, 32n
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spherical angle, 92

network flow, see flow
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Newton-Raphson method, 28
node, 90

objective function, 13, 28, 68
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Pajek, 40
partner, 65
penalties, 23, 119, 120, 122
planarization, 87, 122
potential, see interaction potential
POV-Ray, 57
presentation

forms of, 6–7
graphical, 7
open, 7
tabular, 6, 39
textual, 6, 51

profile perspective, 33
projection

gnomonic, 103
perspective, 56

prototyping, see layout model, pro-
totyping

Quasi-Orthogonal, 121
questionnaires, 35, 47

random field, 15, 20n
random variable, 15
readability, see ergonomics
realizability, 93, 93, 103

planar, 93, 93–94, 111n
rectangular refinement, 110, 126n
rendering, 11, 57
representation, 11

coin graph, 12
great-circle, 91, 96–103
inclusion, 12
intermediate, 87
orthogonal, 12, 103, 103–114
planar, 83
straight-line, 12, 45, 51, 62, 79,

83
representative, 53
Repulsion, 29–31, 45, 53, 65–67

resolution
angular, 86, 94–103

lower bounds, 95, 96
upper bounds, 95, 96

spatial, 85
Rotation, 53
rotation problem, 126
rotational separation, 57

scatterplot, 37, 40
schematic maps, 1
shape, 87, 114, 122

orthogonal, 104, 104–109, 117
simulated annealing, 21, 22, 24, 29,

68, 69
social network analysis, 32, 32–35
social network visualization, 35–41
Social Science Citation Index, 35n
sociogram, 35, 37, 40
sphere, 57, 91
spherical excess, 92
splines, 55, 56, 68
spring embedder, 26, 27, 28, 30,

40, 47, 49, 80
springs, 26, 27, 55, 57, 80
stability, 16, 18, 54, 116, 126
stability model, 18
statistical mechanics, 15
structural variables, 32, 47
subgraph, 82

spanning, 82
substance, 7, 131

of social networks, 32–35, 39–
41

of time table graphs, 62
of web link graphs, 51
semantic, 7, 34, 51, 57
syntactic, 7, 34, 51, 53

supply, 90
residual, 117

target diagram, 35
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generation, 122, 126
temperature, 21n, 21
thermodynamics, 15
three-dimensional, 27, 29, 51
time table graph, see graph, time

table
TLC/EVA, 62
topology, 87, 122
Topology-Shape-Metrics approach,

87, 103, 114, 115, 122
traditions, 25, 103
tree, 82, 93

spanning, 82
triangulation, 41

upward drawings, 88
user interaction, 16, 114, 122–126,

131
scenario

Draw-From-Scratch, 114, 115
Full-Control, 114
No-Change, 114, 115, 116
Relative-Coordinates, 114, 116

Venn diagram, 37
vertex, 5
viewpoints, 56–57
visual clutter, 35, 64, 86
visual complexity, 1
visual programming, 131

WDR Computernacht, 57n
Wordgraph, 6n
World Wide Web, 51
WWW, see World Wide Web


