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In its classic formulation, due to Hume (1739, 1748), inductive reasoning is an 

activity of the mind that takes us from the observed to the unobserved. From the fact that 

the sun has risen every day thus far, we conclude that it will rise again tomorrow; from 

the fact that bread has nourished us in the past, we conclude that it will nourish us in the 

future. The essence of inductive reasoning lies in its ability to take us beyond the confines 

of our current evidence or knowledge to novel conclusions about the unknown. These 

conclusions may be particular, as when we infer that the next swan we see will be white, 

or general, as when we infer that all swans are white.  They may concern the future, as in 

the prediction of rain from a dark cloud; or concern something in the past, as in the 

diagnosis of an infection from current symptoms. 

Hume argued that all such reasoning is founded on the relation of cause and effect. It 

is this relation which takes us beyond our current evidence, whether it is an inference 

from cause to effect, or effect to cause, or from one collateral effect to another. Having 

identified the causal basis of all our inductive reasoning, Hume proceeded to raise a 

fundamental question now known as ‘the problem of induction’: what are the grounds for 

such inductive or causal inferences? In attempting to answer this question, Hume presents 

both a negative and a positive argument.  

In his negative thesis, Hume argued that our knowledge of causal relations is not 

attainable through demonstrative reasoning, but is acquired through past experience. To 

illustrate, our belief that fire causes heat, and the expectation that it will do so in the 

future, is based on previous cases in which one has followed the other, and not on any a 

priori reasoning. However, once Hume identifies experience as the basis for inductive 

inference, he proceeds to demonstrate its inadequacy as a justification for these 
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inferences. Put simply, any such argument requires the presupposition that past 

experience will be a good guide to the future, and this is the very claim we seek to justify.  

For Hume, what is critical about our experience is the perceived similarity between 

particular causes and their effects: ‘From causes, which appear similar, we expect similar 

effects. This is the sum of all our experimental conclusions’ (see Goldstone & Son, 

Chapter 1, this volume). But this expectation cannot be grounded in reason alone, 

because similar causes could conceivably be followed by dissimilar effects. Moreover, if 

one introduces hidden powers or mechanisms to explain our observations at a deeper 

level, the problem just gets shifted down. What guarantees that the powers or 

mechanisms that underlie our current experiences will do so in the future? 

In short, Hume’s negative argument undermines the assumption that the future will 

resemble the past. This assumption cannot be demonstrated a priori, as it is not 

contradictory to imagine that the course of nature may change. But neither can it be 

supported by an appeal to past experience, as this would be to argue in a circle.  

Hume’s argument operates at two levels, both descriptive and justificatory.  At the 

descriptive level it suggests that there is no actual process of reflective thought that takes 

us from the observed to the unobserved. After all, as Hume points out, even young infants 

and animals make such inductions, though they clearly do not use reflective reasoning. At 

the justificatory level, it suggests that there is no possible line of reasoning that could do 

so. Thus Hume argues both that reflective reasoning does not and could not determine 

our inductive inferences. 

Hume’s positive argument provides an answer to the descriptive question of how we 

actually pass from the unobserved to the observed but not to the justificatory one. He 
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argues that it is custom or habit that leads us to make inferences in accordance with past 

regularities. Thus, after observing many cases of a flame being accompanied by heat, a 

novel instance of a flame creates the idea, and hence an expectation, of heat. In this way a 

correspondence is set up between the regularities in the world and the expectations of the 

mind. Moreover, Hume maintains that this tendency is ‘implanted in us as an instinct’, 

because nature would not entrust it to the vagaries of reason. In modern terms, then, we 

are pre-wired to expect past associations to hold in the future, although what is associated 

with what will depend on the environment we experience. This idea of a general purpose 

associative learning system has inspired many contemporary accounts of inductive 

learning (see Cheng & Beuhner, Chapter 5, this volume). 

Hume’s descriptive account suffers from several shortcomings. For one, it seems to 

assume that there is an objective sense of similarity or resemblance that allows us to pass 

from like causes to like effects, and vice-versa. In fact, a selection from amongst many 

dimensions of similarity might be necessary for a particular case. For example, to what 

degree, and in what respects, does a newly encountered object, e.g., a new type of candy 

bar, need to be similar to previously encountered bars, for someone to expect a similar 

taste? If we are to acquire any predictive habits at all we must be able to generalize to 

some extent from one object to another, or to the same object at different times and 

contexts. How this is carried out is as much in need of a descriptive account as the 

problem of induction itself.  Second, we might accept that no reflective reasoning can 

justify our inductive inferences, but this does not entail that reflective reasoning cannot be 

the actual cause of some of our inferences. Nevertheless, Hume presciently identified the 



Inductive inference 

5 

critical role of both similarity and causality in inductive reasoning, the variables that, as 

we will see, are at the heart of work on the psychology of induction.  

Hume was concerned with questions of both description and justification.  In contrast, 

the logical empiricists (e.g., Carnap, 1950, 1966; Hempel, 1965; Reichenbach, 1938) 

focused only on justification. Having successfully provided a formal account of deductive 

logic (Frege, 1880; Russell & Whitehead, 1925), in which questions of deductive validity 

were separated from how people actually make deductive inferences (see Evans, Chapter 

6, this volume), philosophers attempted to do the same for inductive inference by 

formulating rules for an inductive logic.  

Central to this approach is the belief that inductive logic, like deductive logic, 

concerns the logical relations that hold between statements, irrespective of their truth or 

falsity. In the case of inductive logic, however, these relations admit of varying strengths, 

a conditional probability measure reflecting the rational degree of belief that someone 

should have in a hypothesis given the available evidence. For example, the hypothesis 

that ‘all swans are white’ is made probable (to degree p) by the evidence statement that 

‘all swans in Central park are white’. Upon this basis the logical empiricists hoped to 

codify and ultimately justify the principles of sound inductive reasoning. 

This project proved to be fraught with difficulties, even for the most basic inductive 

rules. Thus consider the rule of induction by enumeration, which states that a universal 

hypothesis H1 is confirmed or made probable by its positive instances E. The problem is 

that these very same instances will also confirm a different universal hypothesis H2 

(indeed an infinity of them) which makes an entirely opposite prediction about 

subsequent cases. The most notorious illustration of this point was provided by Goodman 
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(1955), and termed ‘the new riddle of induction’. Imagine that you have examined 

numerous emeralds, and found them all to be colored green. You take this body of 

evidence E to confirm (to some degree) the hypothesis that ‘All emeralds are green’. 

However, suppose we introduce the predicate ‘grue’, which applies to all objects 

examined so far (before time t) and found to be green, and to all objects not examined 

and blue. Given this definition, and the rule that a universal hypothesis is confirmed by 

its positive instances, our evidence set E also confirms the gruesome hypothesis ‘All 

emeralds are grue’. But this is highly undesirable, because each hypothesis makes an 

entirely different prediction as to what will happen in the future (after time t), when we 

examine a new emerald. Goodman states this problem as one of projectibility: how can 

we justify or explain our preference to project predicates such as ‘green’ from past to 

future instances, rather than predicates such as ‘grue’? 

Many commentators object that the problem hinges on the introduction of a bizarre 

predicate, but the same point can be made equally well using mundane predicates or 

simply in terms of functions (see Hempel, 1965). Indeed the problem of drawing a line or 

curve through a finite set of data points illustrates the same difficulty. Two curves C1 and 

C2 may fit the given data points equally well, but diverge otherwise. According to the 

simple inductive rule both are equally confirmed and yet we will often prefer one curve 

over the other. Unfortunately, an inductive logic of the kind proposed by Carnap et al. 

gives us no grounds to decide which predicate (or curve) to project. 

In general, then, Goodman’s problem of projectibility concerns how we distinguish 

projectible predicates such as ‘green’ from non-projectible ones such as ‘grue’. Although 

he concurs with Hume’s claim that induction consists in a mental habit formed by past 
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regularities, he argues that Hume overlooks the further problem (the new riddle) of which 

past regularities are selected by this mental habit, and thus projected in the future. After 

all, it would appear that we experience a vast range of regularities and yet are prepared to 

project only a small subset. Goodman himself offers a solution in terms of entrenchment. 

In short, a predicate is entrenched if it has a past history of use, where both the term 

itself, and the extension of the term, figure in this usage. Thus ‘green’ is entrenched 

whereas ‘grue’ is not, because our previous history of projections involves numerous 

cases of the former, but none of the latter. In common with Hume, then, Goodman gives a 

descriptive account of inductive inference, but one grounded in the historical practices of 

people, and in particular their language use, rather than simply the psychology of an 

individual.  

One shortcoming of Goodman’s proposal is that it hinges on language use. Ultimately 

he attempts to explain our inductive practices in terms of our linguistic practices: ‘the 

roots of inductive validity are to be found in our use of language’. But surely inductive 

questions, such as the problem of projectibility, arise and are solved by infants and 

animals without language (see Suppes, 1994). Indeed our inductive practices may drive 

our linguistic practices, rather than the other way around. Moreover, Goodman rules out, 

or at least overlooks, the possibility that the notions of similarity and causality are 

integral to the process of inductive reasoning. But, as we shall see, more recent analyses 

suggest that these are the concepts that will give us the most leverage on the problem of 

induction. 

In his essay ‘Natural Kinds’ (1970), Quine defends a simple and intuitive answer to 

Goodman’s problem: projectible predicates apply to members of a kind, a grouping 
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formed on the basis of similarity. Thus ‘green’ is projectible while ‘grue’ is not because 

green things are more similar than grue things; that is, green emeralds form a kind 

whereas grue emeralds do not. This shifts the explanatory load onto the twin notions of 

similarity and kind, which Quine holds to be fundamental to inductive inference: ‘every 

reasonable expectation depends on similarity’. For Quine, both humans and animals 

possess an innate standard of similarity useful for making appropriate inductions. 

Without this prior notion no learning or generalization can take place.  

Despite the subjectivity of this primitive similarity standard, Quine believes that its 

uniformity across humans makes the inductive learning of verbal behavior relatively 

straightforward. What guarantees, however, that our ‘innate subjective spacing of 

qualities’ matches up with appropriate groupings in nature? Here Quine appeals to an 

evolutionary explanation: without such a match, and thus the ability to make appropriate 

inductions, survival is unlikely.    

Like Hume, then, Quine proposes a naturalistic account of inductive inference, but in 

addition to the instinctive habit of association, he proposes an innate similarity space. 

Furthermore, Quine argues that this primitive notion of similarity is supplemented, as we 

advance from infant to adult, and from savage to scientist, by ever more developed senses 

of ‘theoretical’ similarity. The development of such theoretical kinds, by the regrouping 

of things, or the introduction of entirely new groupings, arises through ‘trial-and-error 

theorizing’. In Goodman’s terms, novel projections on the basis of second-order 

inductions become entrenched if successful. Although this progress from primitive to 

theoretical similarity may actually engender a qualitative change in our reasoning 

processes, the same inductive tendencies apply throughout. Thus, whether we infer heat 
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from a flame, or a neutrino from its path in a bubble-chamber, or even the downfall of an 

empire from the dissatisfaction of its workers, all such inferences rest on our propensity 

to group kindred entities, and project them into the future on this basis.  

For Quine, our notions of similarity and the way in which we group things become 

increasingly sophisticated and abstract, culminating, he believes, in their eventual 

removal from mature science altogether. This conclusion seems to sit uneasily with his 

claims about theoretical similarity. Nevertheless, as mere humans we will always be left 

with a spectrum of similarity notions, and systems of kinds, applicable as the context 

demands; hence the co-existence of a variety of procedures for carrying out inductive 

inference, a plurality that appears to be echoed in recent cognitive psychology (e.g., 

Cheng & Holyoak, 1985).  

Both Goodman and Quine say very little about the notion of causality. This is 

probably a hangover from the logical empiricist view of science that sought to avoid all 

reference to causal relations in favor of logical ones. Contemporary philosophical 

accounts have striven to re-instate the notion of causality into induction (Glymour, 2001; 

Lipton, 1991; Miller, 1987).  

Miller and Lipton provide numerous examples of inductive inferences that depend on 

the supposition of, or appeal to, causal relations. Indeed, Miller proposes a definition of 

inductive confirmation as causal comparison: hypotheses are confirmed by appropriate 

causal accounts of the data-gathering process. Armed with this notion, he claims that 

Goodman’s new riddle of induction is soluble. It is legitimate to project ‘green’ but not 

‘grue’ because only ‘green’ is consistent with our causal knowledge about color 

constancy, and the belief that no plausible causal mechanism supports spontaneous color 
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change.  He argues that any adequate description of inductive reasoning must allow for 

the influence of causal beliefs. Further development of such an account, however, awaits 

a satisfactory theory of causality (for recent advances see Pearl, 2000).  

In summary, tracing the progress of philosophical analyses suggests a blueprint for a 

descriptive account of inductive reasoning – a mind that can extract relations of similarity 

and causality and apply them to new categories in relevant ways. In subsequent sections 

we argue that this is the same picture that is emerging from empirical work in 

psychology.   

 

Empirical background 

 

Experimental work in psychology on how people determine the projectibility of a 

predicate has its roots in the study of generalization in learning.  Theories of learning 

frequently were attempts to describe the shape of a generalization gradient for a simple 

predicate applied to an even simpler class, often defined by a single dimension.  For 

example, if an organism learned that a tone predicts food, one might ask how the 

organism would respond to other tones.  The function describing how a response (like 

salivation) varies with the similarity of the stimulus to the originally trained stimulus is 

called a generalization gradient.  Shepard (1987) has argued that such functions are 

invariably negatively exponential in shape.   

If understood as general theories of induction, such theories are necessarily 

reductionist in orientation.  Because they only consider the case of generalization along 

specific dimensions that are closely tied to the senses (often spectral properties of sound 

or light), the assumption is, more or less explicitly, that more complex predicates can be 
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decomposed into sets of simpler ones.  The projectibility of complex predicates is thus 

thought to be reducible to generalization along more basic dimensions. 

Reductionism of this kind is highly restrictive.  It requires that there exist some fixed, 

fundamental set of dimensions along which all complex concepts of objects and 

predicates can be aligned.  This requirement has been by and large rejected for many 

reasons.  One problem is that concepts tend to arise in systems, not individually.  Even a 

simple linguistic predicate like “is small” is construed very differently when applied to 

mice and when applied to elephants.  Many predicates that people reason about are 

emergent properties whose existence depends on the attitude of a reasoning agent 

(consider “is beautiful” or a cloud that “looks like a mermaid”).  So we can’t simply 

represent predicates as functions of simpler perceptual properties.  Something else is 

needed, something that respects the information we have about predicates via the 

relations of objects and predicates to one another. 

In the 1970’s, the answer proffered was similarity (Goldstone & Son, Chapter 1, this 

volume). The additional information required to project a predicate was the relative 

position of a category with respect to other categories; the question about one category 

could be decided based on knowledge of the predicate’s relation to other (similar) 

categories (see Medin & Rips, Chapter 6, this volume).  Prior to the 1970’s, similarity 

had generally been construed as a distance in a fairly low dimensional space (Shepard, 

1980).  In 1977, Tversky proposed a new measure that posited that similarity could be 

computed over a large number of dimensions, that both common and distinctive features 

were essential to determine the similarity between any pair of objects, and, critically, that 

the set of features used to measure similarity were context dependent.  Features depended 
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on their diagnosticity in the set of objects being compared and on the specific task used to 

measure similarity.  Tversky’s contrast model of similarity would, it was hoped, prove to 

have sufficient representational power to model a number of cognitive tasks including 

categorization and induction. 

The value of representing category structure in terms of similarity was reinforced by 

Rosch’s (1973) efforts to construct a similarity-based framework for understanding 

natural categories.  Her seminal work on the typicality structure of categories and on the 

basic-level of hierarchical category structure provided the empirical basis for her 

arguments that categories were mentally represented in a way that carved the world at its 

joints.  She imagined categories as clusters in a vast high-dimensional similarity space 

that were devised to maximize the similarity within a cluster and minimize the similarity 

between clusters.  Her belief that the structure of this similarity space was given by the 

world and was not simply a matter of subjective opinion implies that the similarity space 

contains a lot of information, information that can be used for a number of tasks 

including inductive inference. 

Rosch (1978) suggested that the main purpose of category structure was to provide 

the evidential base for relating predicates to categories.  She attempted to motivate the 

basic-level as the level of hierarchical structure that maximized the usefulness of a cue 

for choosing a category, what she called cue validity, the probability of a category given 

a cue.   Basic-level categories were presumed to maximize cue validity by virtue of being 

highly differentiated; members of a basic-level category have more common attributes 

than members of a superordinate and they have fewer common attributes with other 

categories than do members of a subordinate.  Murphy (1982) observed however that this 
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won’t work.  The category with maximum probability given a cue is the most general 

category possible (“entity”), whose probability is 1 (or at least close to it).  But Rosch’s 

idea can be elaborated using a measure of inductive projectibility in a way that succeeds 

in picking out the basic level.  If the level of a hierarchy is selected by appealing to the 

inductive potential of the category, say by maximizing category validity, the probability 

of a specific feature given a category, then one is driven in the opposite direction of cue 

validity, namely to the most specific level.  Given a particular feature, one is pretty much 

guaranteed to choose a category with that feature by choosing a specific object known to 

have the feature.  By trading off category and cue validity, the usefulness of a category 

for predicting a feature and of a feature for predicting a category, one can arrive at an 

intermediate level of hierarchical structure.   Jones (1983) made this suggestion, calling it 

a measure of “collocation.”  A more sophisticated information-theoretic analysis along 

these lines is presented in Corter and Gluck (1992) and Fisher (1987). 

Another quite different but complementary line of work going on at about the same 

time as Rosch’s, with related implications for inductive inference, was Tversky and 

Kahneman’s (1974) development of the representativeness heuristic of probability and 

frequency judgment.  The representativeness heuristic is essentially the idea that 

categorical knowledge is used to make probability judgments (see Kahneman & 

Frederick, Chapter 10, this volume).  In that sense, it is an extension of Rosch’s insights 

about category structure.  She showed that similarity was a guiding principle in decisions 

about category membership; Kahneman and Tversky showed that probability judgment 

could, in some cases, be understood as a process of categorization driven by similarity.  

To illustrate, Linda is judged more likely to be a feminist bankteller than a bankteller 
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(despite the conjunction rule of probability which disallows this conclusion) if she has 

characteristic feminist traits, i.e., if she seems like she is a member of the category of 

feminists. 

In sum, the importance of similarity for how people make inductive inferences was 

recognized in the 1970s in the study of natural category structure and of probability 

judgment and manifested in the development of models of similarity per se. Rips (1975) 

put these strands together in the development of a categorical induction task.  He told 

people that all members of a particular species of animal on a small island had a 

particular contagious disease and asked participants to guess what proportion of other 

species would also have the disease.  For example, if all rabbits have it, what proportion 

of dogs would?  Rips found that judgments went up with the similarity of the two 

categories and with the typicality of the first (premise) category. 

Relatively little work on categorical induction was done by cognitive psychologists 

immediately following Rips’s seminal work.  Instead, the banner was pursued by 

developmental psychologists like Carey (1985).  She focused on the theoretical schema 

that children learn through development and how they use those schema to make 

inductive inferences across categories. In particular, she showed that adults and 10 year-

olds used general biological knowledge to guide their inductions about novel animal 

properties, whereas small children based their inductions on knowledge about humans. 

Gelman and Markman (1986) argued that children prefer to make inductive inferences 

using category structure rather than superficial similarity.  However, it was the theoretical 

discussion and mathematical models of Osherson and his colleagues, discussed below, 
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that led to an explosion of interest by cognitive psychologists with a resulting menu of 

models and phenomena to constrain them. 

Scope of chapter 

 

In order to limit the scope of this chapter, in the remainder we focus exclusively on 

the psychology of categorical induction:  How people arrive at a statement of their 

confidence that a conclusion category has a predicate after being told that one or more 

premise categories do.  As Goodman’s (1955) analysis makes clear, this is a very general 

problem.  Nevertheless, we will not address a number of issues related to induction.  For 

example, we will not address how people go about selecting evidence to support an 

hypothesis (see Klayman & Ha, 1987; Doherty et al., 1996; Oaksford & Chater, 1994).  

We will not address how people discover hypotheses but rather focus only on their degree 

of certainty in a pre-specified hypothesis (cf. the distinction between the contexts of 

discovery and confirmation, Reichenbach, 1938).  This rules out a variety of work on the 

topic of hypothesis discovery (e.g., Klahr, 2000; Klayman, 1988).  Relatedly, we will not 

cover the variety of work on the topic of cue learning, how people learn the predictive or 

diagnostic value of stimuli (see the chapter by Cheng & Buehner, this volume). 

Most of our discussion will concern the evaluation of categorical arguments, such as 

Boys use GABA as a neurotransmitter. 

Therefore, girls use GABA as a neurotransmitter. 

that can be written schematically as a list of sentences: 

 

P1...Pn/C 
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in which the Pi are the premises of an argument and C is the conclusion.  Each statement 

includes a category (e.g., Boys) to which is applied a predicate (e.g., use GABA as a 

neurotransmitter).  In most of the examples discussed, the categories will vary across 

statements whereas the predicate will remain constant.  The general question will be how 

people go about determining their belief in the conclusion of such an argument after 

being told that the premises are true.  We’ll discuss this question both by trying to 

describe human judgment as a set of phenomena and by trying to explain the existence of 

these phenomena in terms of more fundamental and more general principles.  The 

phenomena will concern judgments of the strength of categorical arguments or the 

convincingness of an argument or some other measure of belief in the conclusion once 

the premises are given (reviewed by Heit, 2000). 

One way to represent the problem we address is in terms of conditional probability.  

The issue can be construed in terms of how people make judgments of the following 

form: 

P(Category C has some property | Categories P1...Pn have the property). 

Indeed, some of the tasks we discuss involve a conditional probability judgment 

explicitly.  But even those that don’t, like argument strength, can be directly related to 

judgments of conditional probability.  

Most of the experimental work we address attempts to restrict attention to how people 

use categories to reason by minimizing the role of the predicate in the reasoning process. 

To achieve this, arguments are usually restricted to “blank” predicates, predicates that use 

relatively unfamiliar terms (like “use GABA as a neurotransmitter”) so that they don’t 

contribute much to how people reason about the arguments (Osherson, Smith, Wilkie, 
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López, & Shafir, 1990).  They do contribute some however.  For instance, all the 

predicates applied to animals are obviously biological in nature, thus suggesting that the 

relevant properties for reasoning are biological. Lo, Sides, Rozelle, and Osherson (2002) 

characterize blank predicates as “indefinite in their application to given categories, but 

clear enough to communicate the kind of property in question” (p. 183). 

Philosophers like Carnap (1950) and Hacking (2001) have distinguished intensional 

and extensional representations of probability (sometimes called epistemic vs. aleatory 

representations).  Correspondingly in psychology we can distinguish modes of inference 

that depend on assessment of similarity structure and modes that depend on analyses of 

set structure (see Lagnado & Sloman, in press, for an analysis of the correspondence 

between the philosophical and psychological distinctions).  We refer to the former as the 

inside view of category structure and the latter as the outside view (Tversky & 

Kahneman, 1983; Sloman & Over, 2003).  In this chapter, we focus on induction from 

the inside, via similarity structure.  We thus neglect a host of work concerning, for 

example, how people make conditional probability judgments in the context of well-

defined sample spaces (e.g., Johnson-Laird et al., 1999), reasoning using explicit 

statistical information (e.g., Nisbett, 1993), and the relative advantages of different kinds 

of representational format (e.g., Tversky & Kahneman, 1983). 

 

Two theoretical approaches to inductive reasoning 

A number of theoretical approaches have been taken to the problem of categorical 

induction in psychology.  Using broad strokes, the approaches can be classified into two 

groups: 

• Similarity-based induction 
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• Induction as scientific methodology 

We discuss each in turn.  As will become clear, the approaches are not mutually 

exclusive both because they overlap and because they sometimes speak at different levels 

of abstraction. 

I. Similarity-based induction 

Perhaps the most obvious and robust predictor of inductive strength is similarity.  In 

the simplest case, most people are willing to project a property known to be true of (say) 

crocodiles to a very similar class, like alligators, with some degree of confidence.  Such 

willingness exists either because similarity is a mechanism of induction (Osherson et al., 

1990) or because induction and similarity judgment have some common antecedent 

(Sloman, 1993).  From the scores of examples of the representativeness heuristic at work 

(Tversky & Kahneman, 1974) through Rosch’s (1973) analysis of typicality in terms of 

similarity, a strong correlation between probability and similarity is more the rule than 

the exception.  The argument has been made that similarity is not a real explanation at all 

(Goodman, 1972; see the review in Sloman & Rips, 1998) and phenomena exist that 

contradict prediction based only on similarity (e.g., Gelman & Markman, 1986).  

Nevertheless, similarity remains the key construct in the description and explanation of 

inductive phenomena. 

Consider the similarity and typicality phenomena (Rips, 1975; Osherson et al., 1990; 

López, Atran, Coley, Medin, & Smith, 1997): 

Similarity 

Arguments are strong to the extent that categories in the premises are similar to the 

conclusion category.  For example, 
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Robins have sesamoid bones. 

Therefore, sparrows have sesamoid bones. 

is judged stronger than 

Robins have sesamoid bones. 

Therefore, ostriches have sesamoid bones. 

because robins are more similar to sparrows than to ostriches. 

Typicality 

The more typical premise categories are of the conclusion category, the stronger is the 

argument.  For example, people are more willing to project a predicate from robins to 

birds than from penguins to birds because robins are more typical birds than 

penguins. 

 

The first descriptive mathematical account of phenomena like these expressed 

argument strength in terms of similarity.  Osherson et al. (1990) posited the similarity-

coverage model that proposed that people make categorical inductions on the basis of two 

principles, similarity and category coverage.  Category coverage was actually cashed out 

in terms of similarity.  According to the model, arguments are deemed strong to the 

degree that premise and conclusion categories are similar and to the degree that premises 

“cover” the lowest-level category that includes both premise and conclusion categories.  

The idea is that the categories present in the argument elicit their common superordinate, 

in particular, the most specific superordinate that they share. Category coverage is 

determined by the similarity between the premise categories and all the categories 

contained in this lowest-level superordinate. 
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Sloman (1993) proposed a competing theory of induction that reduces the two 

principles of similarity and category coverage into a single principle of feature coverage.  

Instead of appealing to a class inclusion hierarchy of superordinates and subordinates, 

this theory appeals to the extent of overlap amongst the properties of categories.  

Predicates are projected from premise categories to a conclusion category to the degree 

that the previously known properties of the conclusion category are also properties of the 

premise categories; specifically, in proportion to the number of conclusion category 

features that are present in the premise categories.  Both models can explain the 

similarity, typicality and asymmetry phenomena (Rips, 1975): 

Asymmetry 

Switching premise and conclusion categories can lead to arguments of different 

strength: 

Tigers have 38 chromosomes. 

Therefore, buffaloes have 38 chromosomes. 

is judged stronger than 

Buffaloes have 38 chromosomes. 

Therefore, tigers have 38 chromosomes. 

The similarity-coverage model explains it by appealing to typicality.  Tigers are more 

typical mammals than buffaloes and therefore tigers provide more category coverage.  

The feature-based model explains it by appealing to familiarity.  Tigers are more familiar 

than buffaloes and therefore have more features.  So the features of tigers cover more of 

the features of buffaloes than vice versa. 



Inductive inference 

21 

Differences between the models play out in the analysis of several phenomena.  The 

similarity-coverage model focuses on relations amongst categories; the feature-based 

model on relations amongst properties.  Consider diversity (Osherson et al., 1990): 

Diversity 

The less similar premises are to each other, the stronger the argument tends to be.  

People are more willing to draw the conclusion that all mammals love onions from 

the fact that hippos and hamsters love onions than from the fact that hippos and 

rhinos do because hippos and rhinos are more similar than hippos and hamsters.  

 

The phenomenon has been demonstrated on several occasions with Western adults (e.g., 

López, 1995), though some evidence suggests the phenomenon does not always 

generalize to other groups.  López et al. (1997) failed to find diversity effects amongst 

Itza’ Maya.  Proffitt, Coley, and Medin (2000) found that parks maintenance workers did 

not show diversity effects when reasoning about trees although tree taxonomists did.  

Bailenson, Shum, Atran, Medin, and Coley (2002) did not find diversity effects with 

either Itza’ Maya or bird experts. There is also some evidence that children are not 

sensitive to diversity (Carey, 1985; Gutheil & Gelman, 1997; López, Gelman, Gutheil, & 

Smith, 1992).  However, using materials of greater interest to young children, Heit and 

Hahn (2001) did find diversity effects with 5- and 6-year-olds.  

The data show only mixed support for the phenomenon.  Nevertheless, it is predicted 

by the similarity-coverage model.  Categories that are less similar will tend to cover the 

superordinate that includes them better than categories that are more similar.  The 

feature-based model also predicts the phenomenon, as a result of feature overlap.  When 

categories differ, their features have relatively little overlap, and thus they cover a larger 
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part of feature space; when categories are similar, their coverage of feature space is more 

redundant.  As a result, more dissimilar premises are more likely to show more overlap 

with a conclusion category.  However, this isn’t necessarily so and, indeed, the feature-

based model predicts a boundary condition on diversity (Sloman, 1993): 

Feature exclusion 

A premise category that has little overlap with the conclusion category should have 

no effect on argument strength even if it leads to a more diverse set of premises.  For 

example, 

Fact: German shepherds have sesamoid bones. 

Fact: Giraffes have sesamoid bones. 

Conclusion: Moles have sesamoid bones. 

is judged stronger than 

Fact: German Shepherds have sesamoid bones. 

Fact: Blue whales have sesamoid bones. 

Conclusion: Moles have sesamoid bones. 

even though the second argument has a more diverse set of premises than the first.  The 

feature-based model explains this by appealing to the lack of feature overlap between 

blue whales and moles over and above the overlap between German Shepherds and 

moles.  To explain this phenomenon, the similarity-coverage model must make the ad 

hoc assumption that blue whales are not similar enough to other members of the lowest-

level category including all categories in the arguments (presumably mammals) to add 

more to category coverage than giraffes. 

Monotonicity and  Nonmonotonicity 

When premise categories are sufficiently similar, adding a supporting premise 

will increase the strength of an argument.  However, a counterexample to 
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monotonicity occurs when a premise with a category dissimilar to all other 

categories is introduced: 

Crows have strong sternums. 

Peacocks have strong sternums. 

Therefore, birds have strong sternums. 

is stronger than 

Crows have strong sternums. 

Peacocks have strong sternums. 

Rabbits have strong sternums. 

Therefore, birds have strong sternums. 

 

The similarity-coverage model explains nonmonotonicity through its coverage term.  The 

lowest-level category that must be covered in the first argument is birds because all 

categories in the argument are birds.  But the lowest-level category that must be covered 

in the second argument is more general – animals – because rabbits are not birds.  Worse, 

rabbits are not similar to very many animals and therefore the category does not 

contribute much to argument strength.  The feature-based model cannot explain this 

phenomenon except with added assumptions, for example that the features of highly 

dissimilar premise categories compete with one another as explanations for the predicate 

(see Sloman, 1993). 

  As the analysis of nonmonotonicities makes clear, the feature coverage model 

differs from the similarity-coverage model primarily in that it appeals to properties of 

categories rather than instances in explaining induction phenomena and, as a result, in not 

appealling to the inheritance relations of a class inclusion hierarchy.  That is, it assumes 

that people will not in general infer that a category has a property because its 

superordinate does.  Instead it assumes that people think about categories in terms of their 
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structural relations, in terms of property overlap and relations amongst properties.  This is 

surely the explanation for the inclusion fallacy (Osherson, et al., 1990; Shafir, Smith, & 

Osherson, 1990): 

Inclusion Fallacy 

Similarity relations can override categorical relations between conclusions.  Most 

people judge 

All robins have sesamoid bones. 

Therefore, all birds have sesamoid bones. 

to be stronger than 

 

All robins have sesamoid bones. 

Therefore, all ostriches have sesamoid bones. 

 

Of course, ostriches are birds so that the first conclusion implies the second and therefore 

the second argument must be stronger than the first.  Nevertheless, robins are highly 

typical birds and therefore similar to other birds.  Yet they are distinct from ostriches.  

These similarity relations determine most people’s judgments of argument strength rather 

than the categorical relation.  

An even more direct demonstration of failure to consider category inclusion relations 

is the following (Sloman, 1993; 1998): 

Inclusion Similarity 

Similarity relations can override even transparent categorical relations between 

premise and conclusion.  People do not always judge 

Every individual body of water has a high number of seiches. 

Every individual lake has a high number of seiches. 
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to be perfectly strong even when they agree that a lake is a body of water.  Moreover, 

they judge 

Every individual body of water has a high number of seiches. 

Every individual reservoir has a high number of seiches. 

to be even weaker, presumably because reservoirs are less typical bodies of water 

than lakes. 

These examples suggest that category inclusion knowledge has only a limited role in 

inductive inference.  This might be related to the limited role of inclusion relations in 

other kinds of categorization tasks.  For example, Hampton (1982) showed intransitivities 

in category verification using everyday objects. He found, for example, that people 

affirmed that “A car headlight is a kind of a lamp” and that “A lamp is a kind of 

furniture” but not “A car headlight is a kind of furniture.” 

People are obviously capable of inferring a property from a general to a more specific 

category.  Following an explanation that appeals to inheritance is not difficult (I know 

naked mole rats have livers because all mammals have livers).  But the inclusion fallacy 

and the inclusion similarity phenomenon show that such information is not inevitably and 

therefore not automatically included in the inference process. 

Gelman and Markman have shown that children use category labels to mediate 

induction: 

Naming effect 

Children prefer to project predicates between objects that look similar than 

objects that look dissimilar.  However, this preference is overridden when the 

dissimilar objects are given similar labels. 
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Gelman and Coley (1990) have shown that children as young as 2 years-old are also 

sensitive to the use of labels.  So, on one hand, people are extremely sensitive to the 

information provided by labels when making inductive inferences.  On the other hand, 

the use of structured category knowledge for inductive inference seems to be a derivative 

ability, not a part of the fabric of the reasoning process.  This suggests that the naming 

effect does not concern how people make inferences using knowledge about category 

structure per se, because if the use of structural knowledge is not automatic, very young 

children would not be expected to use it.  Rather, the effect seems to be about the 

pragmatics of language, in particular how people use language to mediate induction.  The 

naming effect probably results from people’s extreme sensitivity to experimenters’ 

linguistic cues.  Even young children apparently have the capacity to note that when an 

experimenter gives two objects similar labels, the experimenter is giving a hint, a hint 

that the objects should be treated similarly at least in the context of the experiment.   This 

ability to take cues from others, and to use language to do so, may well be key 

mechanisms of human induction. 

This is also the conclusion of cross-cultural work by Coley, Medin, and Atran (1997).  

Arguments are judged stronger the more specific the categories involved.  If told that 

dalmations have an ulnar artery, people are more willing to generalize ulnar arteries to 

dogs than to animals (Osherson et al. 1990).  Coley et al. compared people’s willingness 

to project predicates from various levels of the hierarchy of living things to a more 

general level.  For example, when told that a sub-specific category like “male black 

spider monkey” is susceptible to an unfamiliar disease, did participants think that the 

members of the folk-specific category “black spider monkey” were susceptible?  And if 
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members of the specific category were susceptible, then were members of the folk-

generic category (“spider monkey”)?  And if members of the generic category were, then 

were members of the life-form category (“mammal”)?  Finally, assuming the life-form 

category displayed susceptibility, then did the kingdom (“animal”)?  Coley et al. found 

that both American college students and members of a traditional Mayan village in 

lowland Guatemala showed a sharp drop off at a certain point:   

Preferred level of induction 

People are willing to make an inductive inference with confidence from a 

subordinate to a near superordinate up to the folk-generic level; their willingness 

drops off considerably when making inferences to categories more abstract. 

 

These results are consistent with Berlin’s (1992) claim that the folk-generic level is 

the easiest to identify, the most commonly distinguished in speech, and that it serves best 

to distinguish categories.  One might imagine therefore that the folk-generic level would 

constitute the basic-level categories that are often used to organize hierarchical linguistic 

and conceptual categories (Rosch et al., 1976; Brown, 1958; see Murphy, 2002, for a 

review).  Nevertheless, the dominance of generic categories was not expected by Coley et 

al. (1997) because Rosch et al. had found that for the biological categories tree, fish, and 

bird, the life-form level was the category level satisfying a number of operational 

definitions of the basic level.  For example, Rosch et al.’s American college students 

preferred to call objects they were shown “tree,” “fish,” or “bird” rather than “oak,” 

“salmon,” or “robin.” 
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Why the discrepancy?  Why do American college students prefer to name an object a 

tree over an oak yet prefer to project a property from all red oaks to all oaks than from all 

oaks to all trees?  Perhaps they simply can’t identify oaks and therefore fall back on the 

much more general “tree” in order to name.  But this begs the question:  If students 

consider “tree” to be informative and precise enough to name things, why are they 

unwilling to project properties to it?  Coley et al.’s (1997) answer to this conundrum is 

that naming depends on knowledge, names are chosen that are precise enough to be 

informative given what people know about the object being named.  Inductive inference, 

they argue, also depends on a kind of conventional wisdom.  People have learned to 

maximize inductive potential at a particular level of generality (the folk-generic) level 

because culture and linguistic convention specify that that’s the most informative level 

for projecting properties (see Greenfield, Chapter 26, this volume).  For example, 

language tends to use a single morpheme for naming generic-level categories.  This is a 

powerful cue that members of the same generic-level have a lot in common and that 

therefore it’s a good level for guessing that a predicate might hold across it.  This idea is 

related to Shipley’s (1993) notion of overhypotheses (cf. Goodman, 1955): that people 

use category-wide rules about certain kinds of properties to make some inductive 

inferences.  For example, upon encountering a new species, people might assume that 

members of the species will vary more in degree of obesity than in, say, skin color 

(Nisbett et al., 1983) despite having no particular knowledge about the species. 

This observation poses a challenge to feature- and similarity-based models of 

induction (Heit, 1998; Osherson et al., 1990; Sloman, 1993).  These models all start from 

the assumption that people induce new knowledge about categories from old knowledge 
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about the same categories.  But if people make inductive inferences using not only 

specific knowledge about the categories at hand, but also distributional knowledge about 

the likelihood of properties at different hierarchical levels, knowledge that is in part 

culturally transmitted via language, then more enters the inductive inference process than 

models of inductive process have heretofore allowed. 

Mandler and McDonough (1996, 1998) argue that the basic-level bias comes 

relatively late, and demonstrate that 14-month-old infants show a bias to project 

properties within a broad domain (animals or vehicles) rather than at the level usually 

considered to be basic.  This finding is not inconsistent with Coley et al.’s (1997) 

conclusion for the distributional and linguistic properties that they claim mediate 

induction presumably have to be learned, and so finding a basic-level preference only 

amongst adults is sufficient for their argument.  Mandler and McDonough argue that 

infants’ predilection to project to broad domains demonstrates an initial propensity to rely 

on “conceptual” as opposed to “perceptual” knowledge as a basis for induction, meaning 

that infants rely on the very abstract commonalities amongst animals as opposed to the 

perhaps more obvious physical differences amongst basic-level categories (pans versus 

cups and cats versus dogs).  Of course, pans and cups do have physical properties in 

common that distinguish them from cats and dogs (e.g., the former are concave, the latter 

have articulating limbs).  And the distinction between perceptual and conceptual 

properties is anyway tenuous.  Proximal and distal stimuli are necessarily different, i.e., 

even the eye engages in some form of interpretation, and a variety of evidence shows that 

beliefs about what is being perceived affects what is perceived (e.g., Gregory, 1973).  

Nevertheless, as suggested by the phenomena discussed below, induction is mediated by 
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knowledge of categories’ role in causal systems; beliefs about the way the world works 

influence induction as much as overlap of properties does.  Mandler and McDonough’s 

data provide evidence that this is true even for 14 month olds. 

 

II. Induction as scientific methodology 

Induction is of course not merely the province of individuals trying to accomplish 

everyday goals, but also one of the main activities of science.  According to one common 

view of science (Carnap, 1966; Nagel, 1961; Hempel, 1965; but for opposing views see 

Popper, 1963; Hacking, 1983) scientists spend much of their time trying to induce 

general laws about categories from particular examples.  It is natural, therefore, to look to 

the principles that govern induction in science to see how well they describe individual 

behavior (for a discussion of scientific reasoning, see Dunbar & Fugelsang, Chapter 28, 

this volume).  Psychologists have approached induction as a scientific enterprise in three 

different ways. 

The rules of induction 

First, some have examined the extent to which people abide by the normative rules of 

inductive inference that are generally accepted in the scientific community.  One such 

rule is that properties that don’t vary much across category instances are more projectible 

across the whole category than properties that vary more.  Nisbett, Krantz, Jepson, and 

Kunda (1983) showed that people are sensitive to this rule: 

Variability/Centrality 

People are more willing to project predicates that tend to be invariant across category 

instances than variable predicates.  For example, people who are told that one Pacific 

island native is overweight tend to think it is unlikely that all natives of the island are 
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overweight because weight tends to vary across people.  In contrast, if told the native 

has dark skin, they are more likely to generalize to all natives because skin color 

tends to be more uniform within a race. 

 

Sensitivity to variability does not imply however that people consider the variability 

of predicates in the same deliberative manner that a scientist should.  This phenomenon 

could be explained by a sensitivity to centrality (Sloman, Love, & Ahn, 1998).  Given 

two properties A and B such that B depends on A but A does not depend on B, people are 

more willing to project property A than property B because A is more causally central 

than B, even if A and B are equated for variability (Hadjichristidis, Sloman, Stevenson, & 

Over, in press).  More central properties tend to be less variable.  Having a heart is more 

central and less variable amongst animals than having hair.  Centrality and variability are 

almost two sides of the same coin (the inside and outside views, respectively).  In Nisbett 

et al.’s case, having dark skin may be seen as less variable than obesity by virtue of being 

more central, having more apparent causal links to other features of people. 

 The diversity principle is sometimes identified as a principle of good scientific 

practice (e.g., Heit & Hahn, 2001; Hempel, 1965; López, 1995).  Yet Lo, Rozelle, and 

Osherson (2002) argue against the normative status of diversity.  They consider the 

following argument: 

Housecats often carry the parasite Floxum. 

Fieldmice often carry the parasite Floxum. 

All mammals often carry the parasite Floxum. 

which they compare to 

Housecats often carry the parasite Floxum. 

Tigers often carry the parasite Floxum. 
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All mammals often carry the parasite Floxum. 

 

Even though the premise categories of the first argument are more diverse (housecats are 

less similar to fieldmice than to tigers), the second argument might seem stronger because 

housecats could conceivably become infected with the parasite Floxum while hunting 

field mice.  Even if you don’t find the second argument stronger, merely accepting the 

relevance of this infection scenario undermines the diversity principle which prescribes 

that the similarity principle should be determinative for all pairs of arguments. At 

minimum, it shows that the diversity principle doesn’t dominate all other principles of 

sound inference. 

Lo et al. (2002) prove that a different and simple principle of argument strength does 

follow from the Bayesian philosophy of science.  Consider two arguments with the same 

conclusion in which the conclusion implies the premises.  For example, the conclusion 

“every single mammal carries the parasite Floxum” implies that “every single tiger 

carries the parasite Floxum” (on the assumption that “mammal” and “tiger” refer to 

natural, warm-blooded animals).  In such a case, the argument with the less likely 

premises should be stronger.  Lo et al. refer to this as the Premise Probability Principle 

(PPP). In a series of experiments, they show that young children in both the United States 

and Taiwan make judgments that conform to this principle. 

 

Induction as naïve scientific theorizing 

A second approach to induction as a scientific methodology examines the contents of 

beliefs, what knowledge adults and children make use of when making inductive 
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inferences.  Because knowledge is structured in a way that has more or less 

correspondence to the structure of modern scientific theories, sometimes to the structure 

of old or discredited scientific theories, such knowledge is often referred to as a “naïve 

theory” (Carey, 1985; Gopnik & Meltzoff, 1997; Keil, 1989; Murphy & Medin, 1985).  

One strong, contentful position (Carey, 1985) is that people are born with a small number 

of naïve theories that correspond to a small number of domains like physics, biology, 

psychology, etc. and that all other knowledge is constructed using these original theories 

as a scaffolding.  Perhaps, for example, other knowledge is a metaphorical extension of 

these original naïve theories (cf. Lakoff & Johnson, 1980). 

One phenomenon studied by Carey (1985) to support this position is: 

Human bias 

Small children prefer to project a property from people than from other animals.  

Four-year-olds are more likely to agree that a bug has a spleen if told that a person 

does than if told that a bee does.  Ten-year-olds and adults do not show this 

asymmetry, and project as readily from non-human animals as from humans. 

 

Carey argues that this transition is due to a major re-organization of the child’s 

knowledge about animals. Knowledge is constituted by a mutually constraining set of 

concepts that make a coherent whole in analogy to the holistic coherence of scientific 

theories.  As a result, concepts don’t change in isolation but instead as whole networks of 

belief are re-organized (Kuhn, 1962).  On this view, the human bias occurs because a 

four-year-old’s understanding of biological functions is framed in terms of human 
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behavior whereas older children and adults possess an autonomous domain of biological 

knowledge. 

A different enterprise is more descriptive; it simply shows the analogies between 

knowledge structures and scientific theories. For example, Gopnik and Meltzoff (1997) 

claim that just like scientists, both children and lay people construct and revise abstract 

lawlike theories about the world. In particular, they maintain that the general mechanisms 

that underlie conceptual change in cognitive development mirror those responsible for 

theory change in mature science. More specifically, even very young children project 

properties amongst natural kinds on the basis of latent, underlying commonalities 

between categories rather than superficial similarities (e.g., Gelman & Coley, 1990). So 

children behave like “little scientists” in the sense that their inductive inferences are more 

sensitive to the causal principles that govern objects’ composition and behavior than to 

objects’ mere appearance, even though appearance is, by definition, more directly 

observable. 

Of course, analogies between everyday induction and scientific induction have to 

exist.  As long as both children and scientists have beliefs that have positive inductive 

potential, those beliefs are likely to have some correspondence to the world, and the 

knowledge of children and scientists will therefore have to show some convergence.  If 

children did operate merely on the basis of superficial similarities, such things as 

photographs and toy cars would forever stump them.  Children have no choice but to be 

“little scientists” merely to walk around the world without bumping into things.  Because 

of the inevitability of such correspondences, and because scientific theories take a 

multitude of different forms, it’s not obvious that this approach, in the absence of a more 
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fully specified model, has much to offer theories of cognition.  Furthermore, proponents 

of this approach typically present a rather impoverished view of scientific activity, which 

neglects the role of social and cultural norms and practices (see Faucher et al., 2002).  

Efforts to give the approach a more principled grounding have begun (e.g., Gopnik, 

Glymour, Sobel, Schultz, Kushnir & Danks, 2004; Rehder & Hastie, 2001; Sloman, 

Love, & Ahn, 1998).   

Lo, Rozelle, and Osherson (2002) reject the approach outright.  They argue that it just 

doesn’t matter whether people have representational structures that in one way or another 

are similar to scientific theories.  The question that they believe has both prescriptive 

value for improving human induction and descriptive value for developing psychological 

theory is whether whatever method people use to update their beliefs conforms to 

principles of good scientific practice.  

 

Computational models of induction 

The third approach to induction as a scientific methodology is concerned with the 

representation of inductive structure without concern for the process by which people 

make inductive inferences.  The approach takes its lead from Marr’s (1982) analysis of 

the different levels of psychological analysis.  Models at the highest level, those that 

concern themselves with a description of the goals of a cognitive system without direct 

description of the manner in which the mind tries to attain those goals or how the system 

is implemented in the brain are called computational models.  Three kinds of 

computational models of inductive inference have been suggested, all of which find their 

motivation in principles of good scientific methodology.  
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Induction as hypothesis evaluation 

McDonald, Samuels and Rispoli (1996) propose an account of inductive inference 

that appeals to several principles of hypothesis evaluation. They argue that when judging 

the strength of an inductive argument, people actively construct and assess hypotheses in 

the light of the evidence provided by the premises. They advance three determinants of 

hypothesis plausibility: the scope of the conclusion, the number of premises that 

instantiate it, and the number of alternatives to it suggested by the premises. In their 

experiments, all three factors were good predictors of judged argument strength, although 

certain pragmatic considerations, and a fourth factor -- ‘acceptability of the conclusion’ -- 

were also invoked to fully cover the results.  

Despite the model’s success in explaining some judgments, others, such as 

nonmonotonicity, are only dealt with by appeal to pragmatic postulates that are not 

defended in any detail. Moreover, the model is restricted to arguments with general 

conclusions.  Because the model is at a computational level of description, it does not 

make claims about the cognitive processes involved in induction.  As we’ll see next, 

other computational models do offer something in place of a process model that 

McDonald et al.’s framework does not: a rigorous normative analysis of an inductive 

task. 

Bayesian models of inductive inference 

Heit (1998) has proposed that Bayes’ rule provides a representation for how people 

determine the probability of the conclusion of a categorical inductive argument given that 

the premises are true.  The idea is that people combine degrees of prior belief with the 

data given in the premises to determine a posterior degree of belief in the conclusion.  
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Prior beliefs concern relative likelihoods that each combination of categories in the 

argument would all have the relevant property.  For example, for the argument 

Cows can get disease X. 

Sheep can get disease X. 

Heit assumes that people can generate beliefs about the relative prior probability that both 

cows and sheep have the disease, that cows do but sheep don’t, etc.  These beliefs are 

generated heuristically; people are assumed to bring to mind properties shared by cows 

and by sheep, properties that cows have but sheep do not, etc.  The prior probabilities 

reflect the ease of bringing each type of property to mind.  Premises contribute other 

information as well, in this case that only states in which cows indeed have the disease 

are possible.  This can be used to update priors to determine a posterior degree of belief 

that the conclusion is true. 

On the basis of assumptions about what people’s priors are, Heit (1998) is able to 

describe a number of the phenomena of categorical induction: similarity, typicality, 

diversity, and homogeneity.  However, the model is inconsistent with nonmonotonicity 

effects.  Furthermore, because it relies on an extensional updating rule, Bayes’ rule, the 

model cannot explain phenomena that are non-extensional like the inclusion fallacy or the 

inclusion-similarity phenomenon. 

Sanjana and Tenenbaum (2003) offer a Bayesian model of categorical inference with 

a more principled foundation.  The model is applied only to the animal domain.  They 

derive all their probabilities from an hypothesis space that consists of clusters of 

categories.  The model’s prediction for each argument derives from the probability that 

the conclusion category has the property.  This reflects the probability that the conclusion 

category is an element of likely hypotheses, namely that the conclusion category is in the 
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same cluster as the examples shown, i.e., as the premise categories, and that those 

hypothesized clusters have high probability.  The probability of each hypothesis is 

assumed to be inversely related to the size of the hypothesis (the number of animal types 

it includes) and to its complexity, the number of disjoint clusters that it includes.  This 

model performed well in quantitative comparisons against the similarity-coverage model 

and the feature-based model although its consistency with the various phenomena of 

induction has not been reported and is rather opaque. 

The principled probabilistic foundation of this model and its good fit to data so far 

yield promise that the model could serve as a formal representation of categorical 

induction.  The model would show even more promise and power to generalize however 

if its predictions had been derived using more reasonable assumptions about the structure 

of categorical knowledge.  The pairwise cluster hierarchy Sanjana and Tenenbaum use to 

represent knowledge of animals is poorly motivated (though see Kemp & Tenenbaum, 

2003, for an improvement), and there would be even less motivation in other domains (cf. 

Sloman, 1998).  Moreover, if and how the model could explain fallacious reasoning is not 

clear. 

 

Summary of induction as scientific methodology 

 Inductive inference can be fallacious, as demonstrated by the inclusion fallacy 

described above.  Nevetheless, much of the evidence that has been covered in this section 

suggests that people in the psychologist’s laboratory are sensitive to some of the same 

concerns as scientists when they make inductive inferences.  People are more likely to 

project nonvariable over variable predicates, they change their beliefs more when 
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premises are a priori less likely, and their behavior can be modeled by probabilistic 

models constructed from rational principles. 

Other work reviewed shows that people, like scientists, use explanations to mediate 

their inference.  They try to understand why a category should exhibit a predicate based 

on nonobservable properties.  These are valuable observations to allow psychologists to 

begin the process of building a descriptive theory of inductive inference.  Unfortunately, 

current ideas and data place too few constraints on the cognitive processes and 

procedures that people actually use.  

 

Conclusions and Future Directions 

We have reviewed two ways that cognitive scientists have gone about trying to 

describe how people make inductive inferences.  We limited the scope of the problem to 

that of categorical induction, how people generate degrees of confidence that a predicate 

applies to a stated category from premises concerning other categories that the predicate 

is assumed to apply to. Nevertheless, neither approach is a silver bullet.  The similarity-

based approach has been the most productive of well-specified models and phenomena, 

though consideration of the relation between scientific methodology and human induction 

may prove the most important prescriptively and may turn out to provide the most 

enduring principles to distinguish everyday human induction from ideal – or at least other 

– inductive processes.   

A more liberal way to proceed is to accept the apparent plurality of procedures and 

mechanisms that people use to make inductions, and see this pluralism as a virtue rather 

than a vice. 
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The bag of tricks 

Many computational problems are hard because the search space of possible answers 

is so large.  Computer scientists have long used educated guesses or what are often called 

heuristics or rules-of-thumb to prune the search space, making it smaller and thus more 

tractable at the risk of making the problem insoluble by pruning off the best answers.  

Kahneman and Tversky imported this notion of heuristics into the study of probability 

judgment (see Kahneman and Frederick, Chapter 10, this volume).  They suggested that 

people use a set of cognitive heuristics to estimate probabilities, heuristics that were 

informed, that made people’s estimates likely to be reasonable, but left open the 

possibility of systematic error in cases where the heuristics that came naturally to people 

had the unfortunate consequence of leading to the wrong answer.   

Kahneman and Tversky suggested the heuristics of availability, anchoring and 

adjustment, simulation and causality to describe how people make probability judgments.  

They also suggested that people make judgments according to representativeness, the 

degree to which a class or event used as evidence is similar to the class or process being 

judged.  Representativeness is a very abstract heuristic that is compatible with a number 

of different models of the judgment process.  We understand it not so much as a 

particular claim about how people make probability judgments as the claim that processes 

of categorization and similarity play central roles in induction.  This is precisely the claim 

of the similarity-based model outlined above.  

We believe that the bag of tricks describes most completely how people go about 

making inductive leaps.  People seem to use a number of different sources of information 

for making inductive inferences including the availability of featural informational and 
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knowledge about feature overlap, linguistic cues about the distribution of features, the 

relative centrality of features to one another, the relative probability of premises, and 

objects’ roles in causal systems. 

Causal induction 

Our guess is that the treasure trove for future work in categorical induction is in the 

development of the latter mode of inference.  How do people go about using causal 

knowledge to make inductions?  That they do is indisputable.  Consider the following 

phenomenon due to Heit and Rubinstein (1994): 

 

Relevance 

People’s willingness to project a predicate from one category to another depends on 

what else the two categories have in common.  For example, people are more likely to 

project “has a liver with two chambers” from chickens to hawks than from tigers to 

hawks but more likely to project “prefers to feed at night” from tigers to hawks than 

from chickens to hawks. 

 

More specifically, argument strength depends on how people explain why the category 

has the predicate.  In the example, chickens and hawks are known to have biological 

properties in common and therefore think it likely that a biological predicate would 

project from one to the other; tigers and hawks are known to both be hunters and 

carnivores and therefore “prefers to feed at night” is more likely to project between them.  

Sloman (1994) has shown that the strength of an argument depends on whether the 
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premise and conclusion are explained in the same way.  If the premise and conclusion 

have different explanations, the premise can actually reduce belief in the conclusion. 

The explanations in these cases are causal; they refer to more or less well-understood 

causal processes.  Medin, Coley, Storms, and Hayes (in press) have demonstrated 5 

distinct phenomena that depend on causal intuitions about the relations amongst 

categories and predicates.  For example, they showed 

Causal asymmetry 

Switching premise and conclusion categories will reduce the strength of an argument 

if a causal path exists from premise to conclusion.  For example, 

Gazelles contain retinum. 

Lions contain retinum. 

is stronger than  

Lions contain retinum. 

Gazelles contain retinum. 

because the food chain is such that lions eat gazelles and retinum could be transferred 

in the process. 

What’s striking about this kind of example is the exquisite sensitivity to subtle (if 

mundane) causal relations that it demonstrates.  The necessary causal explanation springs 

to mind quickly, apparently automatically, and it does so even though it depends on one 

fact that most people are only dimly aware of (that lions eat gazelles) amongst the vast 

number of facts that are at our disposal. 

We do not interpret the importance of causal relations in induction as support for 

psychological essentialism, the view that people base judgments concerning categories on 

attributions of “essential” qualities: of a true underlying nature that confers kind identity 
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unlike, for example, Kornblith (1993), Medin and Ortony (1989), and Gelman and 

Hirschfeld (1999).  We rather follow Strevens (2001) in the claim that it’s causal 

structure per se that mediates induction, no appeal to essential properties is required (cf. 

Rips, 2001; Sloman & Malt, 2003).  Indeed, the causal relations that support inductive 

inference can be based on very superficial features that might be very mutable.  To 

illustrate, the argument 

Giraffes eat leaves of type X. 

African tawny eagles eat leaves of type X. 

seems reasonably strong only because both giraffes and African eagles can reach high 

leaves and both are found in Africa, hardly a central property of either species.   

The appeal to causal structure is instead intended to appeal to the ability to pick out 

invariants and act as agents to make use of those invariants.  Organisms have a striking 

ability to find the properties of things that maximize their ability to predict and control 

and humans seem to have the most widely applicable capacity of this sort.  But prediction 

and control comes from knowing what variables determine the values of other variables, 

that is how one predicts future outcomes and knows what to manipulate to achieve an 

effect.  And this is of course the domain of causality.  It seems only natural that people 

would use this talent to reason when making inductive inferences. 

The appeal to causal relations is not necessarily an appeal to scientific methodology.  

In fact, some philosophers like Russell (1921) have argued that theories aren’t scientific 

until they’re devoid of causal reference, and the logical empiricists attempted to exorcise 

the notion of causality from ‘scientific’ philosophy.  Of course, to the extent that 

scientists behave like other people in their appeal to causality, then the appeal to 

scientific methodology is trivial. 
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Normative models of causal structure have recently flowered (cf. Pearl, 2000; Spirtes, 

Glymour, & Scheines, 1993) and some of the insights of these models seem to have some 

psychological validity (Sloman & Lagnado, in press).  Bringing them to bear on the 

problem of inductive inference will not be trivial.  But the effort should be made because 

causal modeling seems to be a critical element of the bag of tricks that people use to 

make inductive inferences. 
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