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Can We Trust PRA ? 

 

Qui a vist Paris et noun Cassis, ren a vist. 

If one has seen Paris, but not Cassis, one has seen nothing. 

--- an old Provencal expression 

A. Rauzy 
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24, Allée Chabrier 

13008 Marseille, France 

antoine.rauzy@arboost.com      

1 Introduction 

Katatsuburi 

soro-soro nobore  

fuji no yama 

oh snail 

 climb Mount Fuji, 

but slowly, slowly 

---  Issa 

 

The Fault Trees/Event Trees method is widely used in industry. Probabilistic Risk 

Assessment in the nuclear industry relies worldwide almost exclusively on this 

technique. Several tools are available to assess event tree models. Almost all of 

them implement what we call the “classical” approach: first, event tree sequences are 

transformed into Boolean formulae. Then, after possibly applying some rewriting 

rules, minimal cutsets of these formulae are determined. Finally, various probabilistic 

measures are assessed from the cutsets (including probabilities and/or frequencies 

of sequences, importance factors, sensitivity analyzes, …). This approach is broadly 

accepted. However, it comes with several approximations: 

– In order to assess probabilistic quantities from the cutsets, the rare event 

approximation is applied.  Under certain conditions the min-cut upper bound 

approximation can be used, but only when the boolean equation does not have 

negation and all basic event probabilities are quite low, at least smaller than 10-2. 
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– In order to minimize cutsets, and therefore avoiding combinatorial explosion, 

probability truncation (hereafter referred to as simply truncation) is applied. 

– Finally, in order to handle success branches, various recipes more or less 

mathematically justified are applied. 

Since, up to now, all of the assessment tools rely on the same technology (with some 

variations indeed), it was not possible to verify whether the above approximations are 

accurate for large real-life models, especially since to compute error bounds, the 

exact solution is necessary 

In the beginning of the nineties, a new technology was introduced to handle Boolean 

models: Bryant’s Binary Decision Diagrams (BDD for short) [Bry86,Bry92]. One of the 

major advantages of the BDD technology is that it provides exact values for 

probabilistic measures [Rau93,DR00]. It does not need any kind of truncation or 

approximations. BDDs are however highly memory consuming. Very large models, 

such as event trees of the nuclear industry, were beyond their reach. Nevertheless, 

the methodology can be improved by means of suitable variable heuristics and 

formula rewritings. 

Recently, we were given a rather large event tree model (coming from the nuclear 

industry). We designed a strategy, i.e. a sequence of rewritings, that made it possible 

to handle all of the 181 sequences of the model within reasonable running times and 

memory consumptions. For one of the first times, it was possible to compare results 

of the classical approach with those of the BDD approach, i.e. with exact results. 

As the epigram to this section intimates, we should not draw definitive conclusions 

from a single test case. But a single example suffices to ring the alarm bell: the 

classical approach gives wrong results in a significant proportion of cases. 

The remainder of this article is organized as follows.  Sections 2 and 3 present 

respectively the classical and the BDD approaches. Section 4 gives some insights on 

the test case we used for this study. Section 5 reports comparative results for the 

computation of sequence frequencies.  Section 6 considers briefly the complexity, 

runtime, and space considerations when trying to solve large problems.  Finally, 

section 7 presents our preliminary conclusions. 
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2 The classical approach to assess event trees 

Da Vinci was so steeped in his own tradition that with each step he took, walked a bit 

beyond it. 

--- Scott Buchanan, EMBERS of the WORLD 

2.1 Principle 

By construction, sequences of event trees are mutually exclusive. Therefore, they 

can be treated separately, at least for what concerns the computation of their 

probabilities. 

 

The classical approach to assess event trees works as follows. 

– First, sequences are compiled as explained above. 

– Second, some rewriting is performed on the formula associated with each 

sequence (e.g. modularization) in order to facilitate their treatment. 

– Third, minimal cutsets of each sequence (or group of sequences) are determined. 

Classical algorithms to compute the minimal cutsets work either top-down (e.g. 

[FV72, Rau03]) or bottom-up (e.g. [JK98,JHH04]). 

– Fourth, probabilities/frequencies of sequences are assessed from the cutsets. 

More generally, cutsets are used to get various measures of interest such as 

importance factors of components, sensitivity to variations in basic event 

probabilities, … 

 

In this process, three kinds of approximations are used: 

– Sequences, including success branches, are quantified by means of minimal 

cutsets (which, by definition, do not embed negations). 

– Truncation is applied to limit the process, and therefore reduce the possibility of 

combinatorial explosion. 

– Probabilities are evaluated using one of two first order approximations: the rare 

event approximation or min-cut upper bound. 
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2.2 Truncation in minimal cutsets determination 

In general, sequences of large event trees admit huge numbers of minimal cutsets. 

Therefore, only a subset of the latter’s can be considered (the most important ones, 

in terms of probability, one expects). Algorithms to compute minimal cutsets apply 

truncation to keep only few thousands cutsets (beyond computations are intractable). 

The choice of the right truncation value is a result of trade-offs between accuracy of 

the computation and resource (time and memory) consumption. Expert knowledge 

about the expected probability of the sequence plays also an important role in that 

choice. 

It remains that, by applying truncation, one gets an optimistic approximation. 

Moreover, there is no way to ensure that this approximation is accurate. For instance, 

if we keep a thousand cutsets of probability 10-9 and by the way we ignore a million 

cutsets of order 10-11, then we underestimate the risk by a factor 10. This problem is 

largely ignored by most of the practitioners. 

2.3 Quantification of success branches 

But the main problem in the classical approach stands in the way success branches 

are (badly or even not at all) taken into account. None of the classical algorithms are 

actually able to deal with negations, for two main reasons. First, by definition, minimal 

cutsets do not contain negative literals. Therefore, the functions they encode are 

coherent. The notion of minimal solutions of general (coherent or non-coherent) 

functions exists (this is the notion of prime implicants), but that’s another (very 

different) story. Second, truncation and minimality tests and reduction rules used by 

classical algorithms are not compatible with negations. The interested reader should 

see [Rau01] for a detailed discussion on that topics, including theoretical 

computational complexity arguments. 

 

Some authors propose process success branches as follows. First, negations are 

pushed down toward variables, using de Morgan’s Laws. Second, new variables are 

introduced to represent negative literals. Third, minimal cutsets of the rewritten 

formula are computed. Finally, those that contain both a variable and its (encoded) 

negation are eliminated. This attempt is interesting. However, it cannot work correctly 

because of truncation.  
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3 The BDD approach to assess event trees 

If a man does not keep pace with his companions, perhaps it is because he hears a 

different drummer. Let him step to the music which he hears, however measured or 

far away. 

Henry David Thoreau, WALDEN 

 

Bryant’s Binary Decision Diagrams [Bry86], BDD for short, are now a well-known and 

widely used technique [Bry92]. In this section, we recall briefly the basics of this 

technique and we discuss its use to assess event trees (J. Andrews initiated this 

work in [AD00]). 

3.1 Binary Decision Diagrams 

The Binary Decision Diagram of a formula is a compact encoding of the truth 

table of this formula. From a BDD, it is possible to perform efficiently all of the 

probabilistic quantifications (top event probability, importance factors,…). The BDD 

representation is based on the Shannon decomposition. 

 

By choosing a total order over the variables and applying recursively the Shannon 

decomposition, the truth table of any formula can be graphically represented as a 

binary tree. The nodes are labelled with variables and have two outedges (a then-

outedge, pointing to the node that encodes F[v←1], and an else-outedge, pointing to 

the node that encodes F[v←0]). The leaves are labelled with either 0 or 1. The value 

of the formula for a given variable assignment is obtained by descending along the 

corresponding branch of the tree. The Shannon tree for the formula F ab ac= +  and 

the lexicographic order is pictured Fig. 2 (dashed lines represent else-outedges). 

3.2 Application to Fault Trees/Event Trees assessment 

Thanks to the Shannon decomposition, the probability of a formula F can 

be computed efficiently from the BDD that encodes F (and the probabilities of basic 

events).  

 

It is easy to derive a recursive algorithm from equality (8) [Rau93]. This algorithm is 

linear in the size of the BDD and gives exact results. It needs no truncations and 
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makes no approximation. Importance factors can also be computed efficiently and 

exactly from BDD [DR00]. 

By slightly modifying the semantics of nodes, BDD can also be used to compute and 

to encode minimal cutsets (see [Rau93, Rau01]). BDDs that encode minimal cutsets 

are called ZBDD, from the name given by in its Minato’s seminal article [Min93]. 

Truncation can be applied to keep only the most relevant cutsets. 

 

Hence, the BDD approach to assess event trees works as follows.  

– First, sequences are compiled as explained above. 

– Second, some rewriting is performed on the formula associated with each 

sequence in order to facilitate their treatment and to select a good variable 

ordering. We shall discuss this very important issue in the next section. 

– Third, the BDD that encode the sequence is computed. 

– Fourth, the exact value of the probability (or the frequency) of the sequence is 

computed from the BDD. More generally, importance factors of components, as 

well as sensitivity to variations in basic event probabilities are assessed from the 

BDDs in a exact way. 

 

As a fourth or fifth step and for the sake of the verification of the model, minimal 

cutsets can be extracted. However, this is not necessary. Moreover, since minimal 

cutsets are used only for verification purposes, one need only consider very few of 

them.  In fact, for an analyst to consider more than a few hundred cutsets may be 

cognitively infeasible. 

4  A Case Study 

Mais cher Woody, on doit goûter le vin délicatement, si on l’apprécier à sa juste 

valeur. 

But my dear Woody, one must place wine gently in one’s mouth, if one wishes to 

make an informed judgement. 

--- CoCo to Woody, at Maison d’H 
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4.1 The Model 

The basis of this study is an actual event tree coming from the nuclear industry. This 

event tree is made of 181 sequences, with a total of 2259 basic events. Broken down 

by sequence, the smallest is made of 78 gates and 158 basic events. The largest 

one is made of 1128 gates and 1745 basic events. The mean numbers of gates and 

basic events are respectively 857 and 1455 per sequence. Among the 181 

sequences, 171 lead to core damage. 

 

Ten fault trees, representing the top events of the event trees, are used to build the 

sequences (plus 8 individual events). The smallest of these fault trees is made 74 

gates and 155 basic events. The biggest one is made of 561 gates and 946 basic 

events. The mean numbers of gates and basic events are respectively 277 and 490. 

4.2 Efficiency of the BDD approach 

For each sequence, we computed (with the strategy discussed in section 4.3) the 

following data structures and quantities. 

– The formula rewritten by the strategy. 

– The BDD that encodes this formula. 

– The probability of the sequence computed from the BDD. 

– The minimal cutsets of the sequence. However, it is not possible to compute all of 

the minimal cutsets (for most of the sequences there are more than 109 of them). 

The BDD approach can efficiently count the minimal cutsets, and the prime 

implicants, even though none need be listed.  

To limit the number of minimal cutsets generated, we used a probability truncation 

limit defined thusly: 

(Cutset Value) >= (BDD Value of the Sequence) * 10-4 

So if the probability of a sequence is 10-9, as calculated by BDD, we limited the 

cutsets to those whose probabilities are greater than 10-13.  

It is worth noting that we used BDDs to calculate the exact results as well as to 

create ZBDDs, a data structure from which we can extract the cutsets  [Min93].  The 

cutsets we obtained are the same as those that would have been obtained with a 



 - 8 - 

classical bottom-up or a top-algorithm. However, to extract them from the ZBDD is 

much faster. 

5 Comparison between the classical and the BDD approaches 

[T]hese discoveries clearly confute the Ptolemaic system, and they agree admirably 

with this other position and confirm it. 

--- Galileo, in a letter to the Grand Duchess Christina of Lorraine 

5.1 Experimental protocol 

In this section, we compare the probabilities of sequences we obtained with the BDD 

approach with those that would have been obtained with a classical approach. The 

questions we aim to answer are the following. 

 

Question 1: Is the classical approach, the rare event and mincut upper bound 

approximations, good enough? 

 

Question 2: Is the approximation Q1 accurate (Q1 consists in ignoring success 

branches)? 

 

Question 3: Is the approximation Q2 accurate (Q2 consists in correcting Q1 by 

multiplying it with the probability of success branches)? 

 

Question 4: Is the approximation Q3 accurate (Q3 consists in computing the 

probability of the sequence from its minimal cutsets and employing “delete term”). 

 

In order to answer questions 1 to 4, we computed, for each sequence, the following 

quantities: 

– The exact probability of sequence, computed from the BDD. 

– The first term of the Sylvester-Poincaré development (Q3) computed from the 

minimal cutsets of the sequence (recall that we keep only cutsets whose 

contribution is at least 10-4 times the probability of the sequence as calculated by 

BDD). 
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– The difference between the first and the second terms of the Sylvester-Poincaré 

development, still computed from the cutsets. 

– The exact probability of the conjunction of the failure branches of the sequence 

computed from the BDD that encodes this conjunction. It is worth noticing that this 

approximation should be better than Q1 as we defined it section 2. However, for 

the sake of the simplicity, we shall denote it Q1. 

– The exact probability of the conjunction of the failure branches times one minus 

the exact probability of the disjunction of the success branches (both obtained by 

the BDDs that encode them). For the same reason as previously, this quantity 

should be a better approximation than Q2 but we shall denote it Q2. 

Except the first sequence, that contains only success branches and whose probability 

is 0.999817, probabilities of sequences range rather log-uniformly from 4.99 10-5 to 

2.87 10-18. It would be an error to concentrate on most probable sequences for each 

sequence corresponds to a different situation. The less frequent sequences may also 

be those with the most severe consequences for the environment. Table 5 gives a 

distribution of the sequences according to their probabilities (this distribution is a bit 

arbitrary for the reasons we just gave). 

5.2 Analysis of the results 

Question 1: the question 1 is easy to answer. the range given by the two first terms of 

the Sylvester-Poincaré development is narrow for all of the sequences. The relative 

difference second-term / first-term never exceeds 6%. This means that the rare event 

approximation is accurate, at least for what concerns the quantity it assesses. 

 

Question 2: To answer this question, we compute the relative difference [Q1(S)-

p(S)]/p(S) which represents the relative error one makes by considering Q1 (note that 

Q1 is always bigger than the exact probability). 

For only one sixth of the sequences Q1 is pessimistic by a factor less than 2! For half 

of the sequences, Q1 is pessimistic by at least two orders of magnitude! Sequence 

number 13 has the “gold medal” with a relative error of 6.53 107 for a probability 1.72 

10-12. 
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Question 3:  Q2 corrects a bit Q1. However, it gives very pessimistic results for two 

thirds of the sequences and is still pessimistic by two orders of magnitude for half of 

the sequences. Sequence number 13 has again the “gold medal” with a relative error 

of 3.98 106. 

 

Question 4: The answer to this question is a bit more complex for Q3 gives 

sometimes optimistic results. However, the greater the number of minimal cutsets 

considered, the less the expectation to be optimistic. So, on the one hand, one may 

argue that we didn’t take into account enough cutsets. On the other hand, the 

truncation has to be put somewhere in order to avoid prohibitively long run times. By 

setting it to 10-4 the probability of the sequence, we adopted a quite conservative 

attitude.  If we had used the min-cut upper bound approximation, the results would 

have been even more optimistic. 

 

Q3 is thus optimistic in more than a quarter of the sequences. It is optimistic by a 

factor 2 in at least one sequence whose probability is around 10-9 and by a factor 4 

for at least one sequence whose probability is around 10-12. 

 

Q3 is thus pessimistic by a factor 2 or more for 104 sequences among 181 and by a 

factor 10 or more for one third of the sequences. For instance, it is pessimistic by a 

factor 14 for the sequence number whose exact probability 7.42 10-6. 

 

In order to confirm these results, we calculated the cutsets whose fractional 

contributions to the probability of the sequence is greater than 10-6 (rather than 10-4). 

Indeed, running times and numbers of cutsets increase quite a lot (running times are 

up to 20 minutes and for some of the sequences up to 200,000 cutsets show up). 

With such a low truncation, Q3 is pessimistic on all but 7 sequences. On the latter 

sequences, it is optimistic by at most 7%, which is quite acceptable. Table 10 gives 

the distribution of sequences according to the relative error made by Q3, when Q3 is 

pessimistic. It is worth noticing that Q3 is now pessimistic by a factor greater than 10 

for more than a third of the sequences and by a factor greater than 80 for 18 of them. 

 

Last, but not least: the sum of the probabilities of core damage sequences computed 

with the BDD approach is 2.27 10-5. With the classical approach we obtain, for both 
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cutoffs (10-4 times the probabilty of the sequences and 10-6 times the probability of 

the sequences), 1.29 10-4. It has been pointed out by M. Barrett that just summing 

the probabilities obtained for each sequence may be incorrect because some cutsets 

may be duplicated (or even subsumed). With the BDD approach this problem does 

not exist since the sequences are exclusive to one another by construction. In order 

to confirm our observations, we performed the following experiment. For different 

absolute cut-offs, we computed the cutsets for each core-damage sequence, we 

collected all of these cutsets together, we removed those duplicated and subsumed, 

and then we computed the probability of a core damage from the resulting set. Table 

11 gives the results obtained for absolute cut-offs of 10-10, 10-11, 10-12 and 10-13 (i.e. 

we kept only those cutsets whose probabilities are greater than the above cut-offs). 

For all of these cut-offs, the probability of a core damage is 1.21 10-4. Therefore, no 

matter which way it is applied, the classical approach overestimates by almost a 

factor 5 the likehood of core damage.  Recall that even in the small example at the 

end of Section 3.2, all approximations overstated results by a factor of 2. 

6  Runtime, Space, and Complexity 

Faire de la bonne cuisine demande un certain temps.  Si on vous fait attendre, c’est 

pour mieux vous servir, et vous plaire. 

Good cooking takes the time it takes.  If we are making you wait, it is to better serve 

you, and to please you. 

--- Menu of Restaurant Antoine, New Orleans 

 

Our total run times are obtained by accumulating the running times to rewrite the 

formula, to build the BDD, to compute the probability from the BDD and to build the 

ZBDD that encodes the minimal cutsets (with a 10-4 relative cut-off). They were 

observed on a laptop computer running Windows 2000 with a processor speed of 1.8 

Ghz and with a 1 gigabyte of RAM. It takes at most 156.1 seconds to handle a 

sequence. All but 2 sequences are treated in less than 75 seconds. On average it 

takes 16.03 seconds to fully quantify a sequence. These running times can surely be 

improved by using larger hashtables, a faster computer, or by improving the strategy. 

More importantly, the resulting BDD can be cached for subsequent quantification at a 

later time with different variable probabilities. It takes at most 4.27 seconds to 
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compute the probability of a sequence from its BDD (and 0.81 seconds on average). 

The running time to assess a probability from a BDD doesn’t depend on the 

probabilities of basic events. 

 

It takes at most 4,86 millions nodes to build the BDD and the ZBDD that encodes the 

cutsets. On average these computations require 1,28 millions nodes. It other words, 

given the size of the hashtables, the most difficult sequence is handled within around 

200 megabytes. 

 

The past 20 years have seen the movement of crucial engineering programs from 

mainframe and mini-computers to personal computers, and dramatic increases in 

computation speed and memory limits. We all remember the PC-AT in 1986 which 

increased the clock speed of the original PC from 4.77 Mhz to 6 Mhz, while now off-

the-shelf hardware can run at 2.6 Ghz. 

 

While all of this is well and good, it has also given us unrealistic notions of what 

runtimes and memory requirements should be when solving NP-hard problems, such 

as the one described in this article. Certainly computing from BDDs will take longer 

and need more space than simple bottom-up algorithms with truncation.  But when 

solving calculations to help us understand the risk to and safety of populations and 

environments, the runtime difference between 5 seconds and 50 seconds can 

rationally be ignored when the extra 45 seconds will produce exactly correct answers. 

 

Another interesting question is how one measures the complexity of an event tree 

made up of fault trees? Does one count the number of gates and basic events?  

Does one count the number of levels in the structure? How does one score the 

combination of operators so as to distinguish the difference in complexity between F 

= -a+b+(c*d) and G = -(a*(b+c) xor d)?  Does one count the number of independent 

sub-trees, the number of branches for each gate, the number of negations? This is 

not simply an academic question.  By understanding the complexity of the problem 

space, a set of heuristics can be chosen quickly, instead of randomly trying one after 

another. 
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In computer science, the analogous problem exists in measuring the “size” of a 

program. There are many putative measures being used: SLOC, McCabe’s 

Cyclomatic Complexity, NPATH, Halstead Software Science are examples of some 

standard metrics. The authors are investigating such metrics, which will be detailed in 

a forthcoming technical report. 

 

7 Conclusion 

There is no single development, in either technology or management technique, 

which by itself promises even one-order of magnitude improvement within a decade 

in productivity, in reliability, in simplicity. 

--- Fredrick P. Brooks, Jr., NO SILVER BULLET 

 

In this article, we have reported the results of a comparative study of two 

technologies to assess risk models: the classical approach, widely used and trusted, 

based on minimal cutsets and the BDD approach, improved by means of heuristics, 

that in making no approximations, gives exact results. The study is based on an 

actual linked-fault tree model  representing an event tree coming from the nuclear 

industry. We used the Aralia computation engine which implements both approaches 

as well as many heuristics and formula rewriting strategies.  

Indeed, definitive conclusions cannot be drawn from a single example. However, our 

test case is sufficiently large and representative and the results are sufficiently clear 

to make the following observations. 

– The approximation that consists in taking into account failure branches only 

should be avoided. Our experiments show that, even corrected by a factor 

obtained from success branches, this approximation overestimates, very often by 

orders of magnitude,  the probability of the sequence. 

– The assessment of the probabilities of the sequences through the minimal cutsets 

should be considered with care. In a significant number of cases, this 

approximation gives optimistic results, because of truncations. Such an 

underestimation of the risk is not acceptable. Moreover, the same truncation that 

gives an optimistic result in one sub-system may give a very pessimistic result in 

another sub-system, within the same top event!  With a truncation set to 10-4 



 - 14 - 

times the probability of the sequence, we observed, among the 181 sequences of 

our test case, results that are optimistic by a factor 4 together with results that are 

pessimistic by a factor 96. 

– Such variations make the ranking of sequences according to their contributions to 

the overall risk delicate, if not dubious.  

– The classical approach overestimates the likehood of a core damage by almost a 

factor 5. 

– Because of imprecision on the values of probabilities (when computed from the 

cutsets), the rankings of basic events induced by importance factors should be 

considered with care. This remark is especially important for the so-called risk 

achievement worth that can miss important basic events. 

 

The above observations do not mean that existing PRA studies based on event trees 

must be discarded. Nevertheless, they are a stone in the garden of the classical 

approach based on minimal cutsets. On the other hand, we don’t claim that Binary 

Decision Diagrams are the universal panacea. This technique still suffers from the 

exponential explosion of memory requirements. We have shown that heuristics can 

be designed which improve dramatically its efficiency. They are however hard to 

tune. More experiments, more efforts are necessary to make our approach able to 

deal with all the existing models. 

 

One final note:  as Fred Brooks’ quotation states at the beginning of this section, we 

should expect no silver bullet to slay the werewolf of complex computations.  What is 

important is that any solution is (1) productive, that it allows us to work orderly and 

rationally, (2) reliable, that it gives us the correct answers with explicit knowledge of 

the error bounds, and (3) simple, that it allows us to confirm the problem we are 

solving and its solution.  This study is a step towards this goal. 
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Fig. 1. An event tree and Boolean formulae associated with its sequences. 
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Figure 2. From the Shannon Tree to the BDD. 

 


