

New PSA engines and Binary Decision Diagram

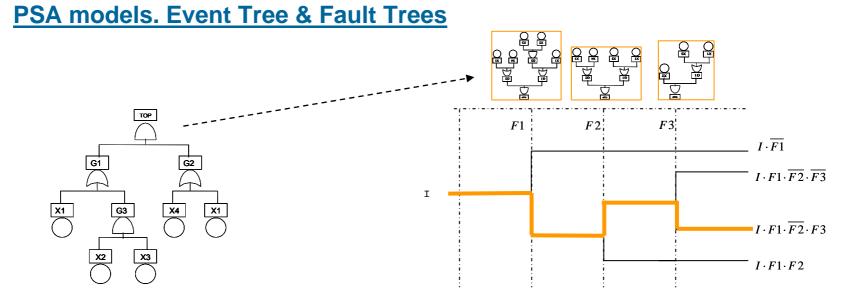
Cristina Ibáñez Llano

Next Generation PSA Software, Declarative Modeling, and Model Representation Standards Workshop Kernkraftwerk Gösgen - Daeniken – Switzerland – 12 June 2007

Introduction

Workshop Objectives

- 2. Declarative modelling
- 1. Next generation PSA software \rightarrow new calculation engines techniques
 - \rightarrow better user interfaces. Completeness of models
- 3. Model Representation Standards \rightarrow software-independent format. Standard language


PSA software: calculation engines

- Classical methodology: \checkmark
 - Calculation of MCS: direct manipulation of the Boolean formulae
 - Approximations & assumptions (truncations, rare event approximation)

BDD technology: \checkmark

- Encoding Boolean model in BDD: more compact data structure ٠
- Analysis relies on BDD: improvement of accuracy and efficiency ٠
- Main drawback: sensitivity to initial variable ordering (memory blow-up) ٠
- Mature technology: ٠
 - Most work centered on Fault Tree models
 - Next step: linked Fault Trees and Event Trees

PSA models and BDD

BDD methodology for PSA models

- ✓ Sequences of non-disjoints or linked Fault Trees (variables in common)
- ✓ Current treatment: sequences reduced to an AND large gate
- ✓ Need to extend previous strategies to deal with groups of non-disjoints FTs
- ✓ <u>Key issue</u>: treatment of shared variables (domains intersection):
 - 1. Conversion Strategies
 - 2. Ordering Schemes

Instituto de Investigación Tecnológica

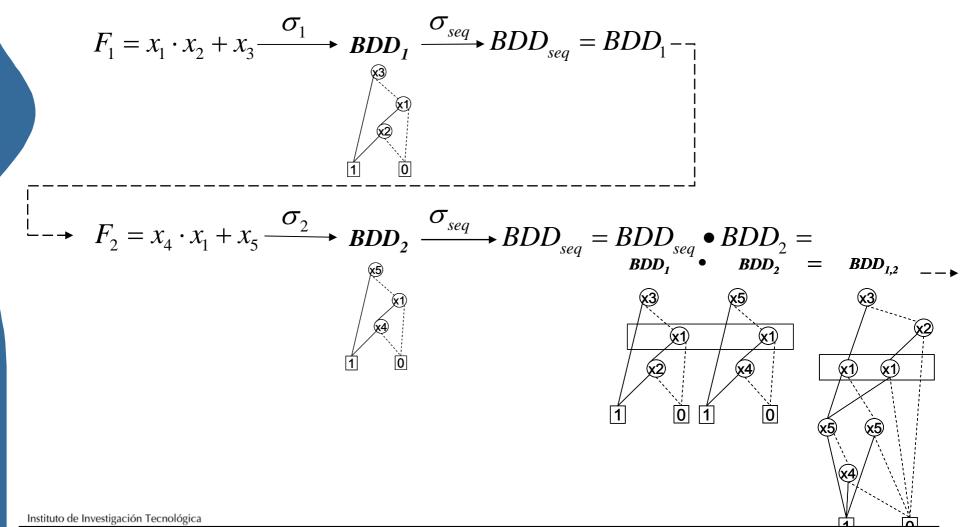
Strategies for conversion (I)

<u>Conversion procedures for linked Fault Trees</u>

- ✓ Non-disjoints FT within the same sequence: common variables
- ✓ To apply BDD approach: convert whole sequence to BDD before analysis

Collapsed Method

- ✓ Sequence delineation completely known, reduced to a higher AND gate (large FT)
- ✓ Compilation and pre-processing of full sequence before tackling BDD conversion
- ✓ BDD obtained in <u>one collapsed step</u>


✤ <u>Accumulative method</u>

- ✓ Partially compose the BDD of the linked FTs
- ✓ Compilation, pre-processing & conversion considered for each FT
- ✓ BDD obtained <u>incrementally</u>:
 - Compose previous partial sequence BDD with the Fault Tree BDD

Strategies for conversion (II)

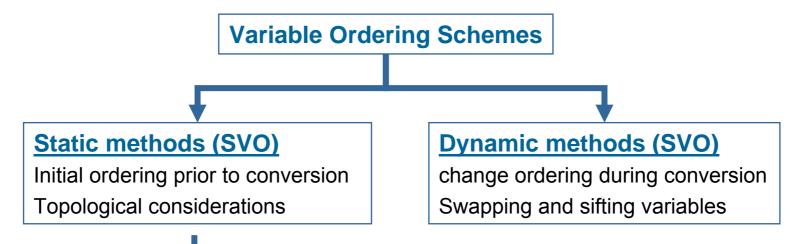
• Accumulative procedure. Example $|F_1 \bullet F_2|$

Escuela Técnica Superior de Ingeniería (ICAI) Universidad Pontificia Comillas

Next Generation PSA Software, Declarative Modeling, and Model Representation Standards- 5

Strategies for conversion (III)

- Advantages for the incremental approach
 - Flexibility to apply the methodology by defining more local strategies
 - Reutilization of previous calculations (shared sub-branches)
 - ✓ Adaptable for dynamics approaches
 - ✓ Study of direct effect of each subsystem on the final result


<u>Research efforts need to be done on:</u>

- ✓ Strategies for variable ordering and for conversion
- ✓ Shared variables ordering in the overall sequence ordering

Variable Ordering Schemes (I) - Review

• Problem studied exclusively in the context of FT (sequence \rightarrow large AND gate)

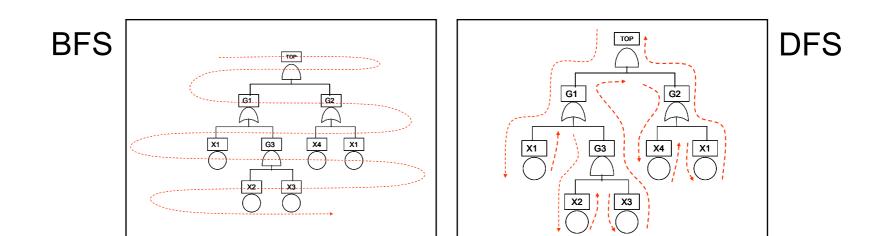
1. <u>Rule-based schemes:</u>

- ✓ general or universal ordering scheme
- ✓ straightforward rule-based strategy
- \checkmark Simple to implement and easy to compute
- ✓ Categories: structural & weighted methods

2. Adaptable schemes approach

✓ No universal method: select the best basic scheme for each case

Variable Ordering Schemes (II) - Review


Static Rule-based Schemes:

✓ <u>Structural</u>

- · organized traversal of the tree
- Two basic: breadth-first (BFS) & depth-first (DFS)
- Variants:
 - reordering arguments (formula rewriting)
 - Different criteria to modify priority of exploration
- More used: preserve neighborhoods & respect modules

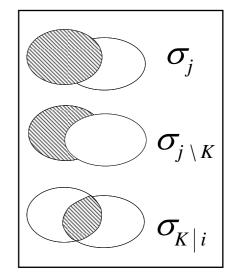
Weigthed

• Complete rearrange: different measures to variables

Instituto de Investigación Tecnológica

Escuela Técnica Superior de Ingeniería (ICAI) Universidad Pontificia Comillas

Next Generation PSA Software, Declarative Modeling, and Model Representation Standards-8


Variable Ordering Schemes (III) - Extensions

Motivation

- ✓ Good orderings for each FT, but ...
- ✓ Strategies to combine individual orderings & study domain intersection ordering

Questions

- ✓ Keep common variables together?
- ✓ Position of common variables?
- ✓ Apply strategy locally or globally?

Notation

- $\checkmark \sigma_j$: variables ordering for tree F_j
- ✓ $\sigma_{j \setminus K}$: variables ordering of tree F_i without variables of Dom(K)
- $\checkmark \sigma_{K|i}$: variables ordering of Dom(K) induced by ordering of F_{i}

Variable Ordering Schemes (IV) - Extensions

• Extensions

- ✓ EH1: Do not keep together domains intersection. Order variables when encountered
- ✓ **EH2**: Consecutive tree domain intersection variables together, placed in the middle
- ✓ EH3: All trees common variables together, placed at the beginning of global ordering
- > Individual orderings obtained with different basic scheme. Individual study is required

Preliminary studies and results

- Accumulative method gives good results with some ordering extensions, showing the <u>potential</u> of this approach
- ✓ Concerning the orderings extensions, it appears <u>beneficial</u> but <u>opposite</u> effects:
 - keeping common variables together vs. preserving neighbourhoods

Future work

- ✓ Compromise between both effects
- ✓ Bigger benchmark with more configurations of linked FTs
- ✓ Problem to obtain a good benchmark. Real models are very large

Conclusions

- <u>BDD approach</u> offers great improvements for <u>PSA models</u> analysis & assessment
- Methodology has to be <u>extended</u> for linked Fault Trees
- The <u>incremental approach</u> provides flexibility for both PSA applications and dynamic extensions
- But the <u>key issue of the common variables ordering</u> has to be studied carefully
- An <u>appropriate benchmark</u> is needed to develop this ideas

END PRESENTATION

Instituto de Investigación Tecnológica

Escuela Técnica Superior de Ingeniería (ICAI) Universidad Pontificia Comillas

Next Generation PSA Software, Declarative Modeling, and Model Representation Standards- 12